
Combinatorial Techniques for Hexahedral Mesh
Generation

Kilian Verhetsel

2024

Submitted in partial fulfillment of the requirements for the degree of
Doctor in Engineering Sciences

Advisor
Jean-François Remacle

Jury
David Bommes (Universität Bern)

Julien Hendrickx (UCLouvain)
Bruno Lévy (INRIA)

Scott A. Mitchell (Sandia National Laboratories)
Jeanne Pellerin (TotalEnergies)

Aude Simar (UCLouvain)

Table of Contents

Table of Contents 1

1 Introduction 9
1.1 Contributions . 13
1.2 Publications . 14

2 The Many Facets of Hexahedral Mesh Generation 15
2.1 Background and Definitions 16

2.1.1 Topological and Geometric Meshes 16
2.1.2 Manifolds . 19
2.1.3 Dual Meshes 19

2.2 What Domains Are Hex-Meshable 20
2.3 How Hex-Meshes Are Constructed 24

2.3.1 Topological Advancing Fronts 24
2.3.2 Octree-based Hex-Meshing 25
2.3.3 Frame fields and Hexahedral Mesh Generation 25
2.3.4 Polycube-Based Methods 26
2.3.5 Hex-Dominant Mesh Generation 27

2.4 Evaluating and Improving Meshes 28

3 The Complexity of Indirect Hex-Dominant Meshing 31
3.1 Problem Statement 32
3.2 Reduction from 3-SAT 35

3.2.1 Encoding of Boolean Variables 36
3.2.2 Encoding of Logical Clauses 36

1

Table of Contents

3.2.3 T-junctions 38
3.2.4 Combining Tetrahedra into Hexahedra is NP-

Hard . 38

4 Searching for Combinatorial Meshes 43
4.1 Enumerating combinatorial hexahedral meshes . . . 44

4.1.1 Backtrack search algorithm 45
4.1.2 Search-space Reduction Strategies 46
4.1.3 Parallel Search 54
4.1.4 Lower Bounds for Hex-Meshing Problems . . 54

4.2 Simplifying Hexahedral Meshes 55
4.2.1 Cavity Selection 56
4.2.2 Cavity Remeshing 57
4.2.3 Untangling 59

5 Flipping Towards Hexahedral Meshes 61
5.1 Finding Combinatorial Meshes Using Quad Flips . . 62

5.1.1 Overview . 62
5.1.2 Shellability and Quad Flips 64
5.1.3 Identifying and Performing Flips 64
5.1.4 Symmetry . 67

5.1.4.1 Computing the Automorphism Group 69
5.1.4.2 Encoding the Search Tree 72
5.1.4.3 Dominance Detection and Pruning . 74

5.2 Finding Larger Solutions using Pre-Computed Meshes 76
5.2.1 Computing Small Shellable Meshes 78
5.2.2 Using the Pre-Computed Table 81

5.3 A Constructive Solution for Constrained Hex-Meshing 82
5.4 Hexahedrizations for Small Quadrangulations of the

Sphere . 85
5.5 Small Non-Shellable Hexahedral Meshes 86

6 A Geometric Mesh of Schneiders’ Pyramid 91
6.1 Simplifying a Mesh of Schneiders’ Pyramid 92
6.2 The First Geometric Mesh of Schneiders’ Pyramid . 97

2

Table of Contents

6.2.1 Initial Numerical Solution 99
6.2.2 Constructing an Exact Geometric Mesh . . . 99

7 Conclusion 103

Bibliography 107

3

Abstract

Hexahedral meshes are used in engineering and computer
graphics to describe complex geometric shapes by subdivid-
ing them into cube-like cells. Hexahedral meshes are widely
considered advantageous over tetrahedral meshes, in terms
of efficiency or their ability to align elements to relevant ge-
ometric features. Nonetheless, they have proven difficult to
generate automatically for the wide range of geometric mod-
els used in industrial applications.

This thesis uses combinatorial and topological techniques
to answer long-standing theoretical questions pertaining to
the generation of hexahedral meshes. Namely, search algo-
rithms exploring the space of possible topological meshes are
used to find small hexahedral meshes with a given bound-
ary, typically less than 70 hexahedra in the entire mesh.
The special case of topological balls is treated separately, us-
ing shellings to more efficiently construct hexahedral meshes.
These algorithms are fast enough to compute hexahedral meshes
for all quadrangulated spheres with up to 20 faces. This
yields an explicit construction showing that any quadran-
gulated sphere with n faces can be filled by a topological
mesh containing up to 78n hexahedra. This new bound im-
proves previous results requiring up to 5396n hexahedra. Fur-
thermore, the indirect generation of hex-dominant meshes by
combining tetrahedra into hexahedra is shown to be compu-
tationally intractable, justifying the existing use of heuristics
for this problem.

These algorithms are also used in the construction of
the first geometric meshes with planar faces for two difficult
test cases for hexahedral mesh generation: the 8-quadrangle
tetragonal trapezohedron, and a 16-quadrangle polyhedron
known as Schneiders’ pyramid.

Acknowledgements

Merci à Jean-François qui m’a mené sur ce chemin plein de pyra-
mides et autres matroïdes,

Merci à Jeanne pour toutes les conversations et tous ses conseils
bienveillants,

Merci à tous les amis eulériens avec qui j’ai passé ces quelques
années, Pierre-Alexandre et ses petites croix, Ruiyang toujours plein
de gaieté malgré ses domaines malencontreusement décomposés,
Amaury qui nous a guidé aux travers ces sinueux sentiers, Céléstin
et ses milliards de tétraèdres, Maxence qui nous a aidé à traverser
de nombreuses couches limites, Arthur qui s’est si bien adapté à
la métrique canadienne qu’il s’y est perdu, et tous les autres habi-
tants plus ou moins incongrus de notre bâtiment bien-aimé. Bonne
chance à Alexandre et Jovana dont la quête pour les séparatrices
a rendu inséparables. Thank you Christos, who recently, squarely,
left us for newer horizons.
蕊丽，你已经回国，我祝你好运研究海洋的奇迹。

Sankou伊伊，跟你花时间很开心，我一直很期待跟你看电影啊，
聊个天啊，吃个饭啊，但我最期待的事就是你自己的论文答辩，你
自己的成功。

7

Chapter 1

Introduction

Meshes are the means by which computer systems represent and
manipulate geometric objects (Figure 1). Their use is ubiquitous
in computer graphics [Baumgart, 1972; Catmull, 1972; Lévy, 2001;
Gotsman et al., 2003; Botsch et al., 2007; Sheffer et al., 2007; Zhang
et al., 2010], biomedical engineering [Bourdin et al., 2007; Shep-
herd and Johnson, 2009; Marchandise et al., 2010; Sazonov and

Figure 1: A surface mesh (left) and a volumetric, all-hexahedral
mesh (right).

9

1. Introduction

Figure 2: Different cell types used in volumetric meshes. From left
to right: a hexahedron, a tetrahedron, a prism and a pyramid.

Nithiarasu, 2011; Bosnjak et al., 2024], and a wide range of other
engineering disciplines through the finite-element method [Turner
et al., 1956; Wördenweber, 1984; Caendish et al., 1985; Ho-Le,
1988; Tam and Armstrong, 1991; Hughes et al., 2005; Bathe, 2006;
Geuzaine and Remacle, 2009]. A mesh allows algorithmic process-
ing of complex shapes by subdividing them into simple elements,
either polygons or polyhedra [Bern and Plassmann, 2000]. Meshes
can be classified according to the kinds of elements they contain.
In the case of surface meshes, common element types are triangles
and quadrangles. Volumetric meshes are often made up of solid
tetrahedra, triangular prisms, square pyramids, and, the focus of
this thesis, hexahedra (Figure 2). Hexahedra are 6-sided polyhedra
bounded by quadrangular faces.

The manuals of software tools that use or generate meshes are
rife with recommendations and requirements regarding the qual-
ity of the meshes, including ranges of acceptable angles in mesh
elements, acceptable aspect ratios for quadrangles [ANSYS, 2021;
Altair, 2024b], the location and amount of irregular vertices [Pixar,
2023], as well as restrictions on the proportion of non-quadrangular
or non-hexahedral elements [Shimada, 2018]. Indeed, hexahedral
meshes offer a variety of advantages over tetrahedral meshes: they
allow better allocations of computational resources, can align el-
ements to relevant geometric features [Shimada, 2011], and enable
meshes with fewer elements for the same level of accuracy [Chawner
et al., 2016] as well as faster processing [Remacle et al., 2016].

10

In spite of all these advantages, there remain major obstacles
to the automatic generation of high-quality hexahedral meshes. A
wide variety of approaches have been employed [Tautges et al., 1996;
Schneiders, 1996; Murdoch et al., 1997; Nieser et al., 2011; Livesu
et al., 2013; Schneiders, 2000; Gao et al., 2019; Li et al., 2012], but
none have proven sufficiently robust and versatile as to eliminate the
need for manual and semi-manual generation techniques [Zoccheddu
et al., 2023; Altair, 2024a; Cubit, 2024]. This is in stark contrast
with tetrahedral meshes which can be generated reliably by robust
algorithms with strong theoretical guarantees on the quality of the
elements [Shewchuk, 1998; Geuzaine and Remacle, 2009; Si, 2015].

It can be tempting to leverage these algorithms by converting a
high-quality tetrahedral mesh into a hexahedral mesh. Such indirect
approaches inherit the level of automation traditionally achieved
by tet-meshing software, but fall short in other respects. These
techniques are usually only able to generate hex-dominant meshes,
mixing hexahedra with tetrahedra, prisms and pyramids [Meshkat
and Talmor, 2000; Yamakawa and Shimada, 2003; Baudouin et al.,
2014; Botella et al., 2016; Pellerin et al., 2018a].

When it comes to all-hexahedral mesh generation, the few the-
oretical results available primarily concern topological mesh gener-
ation, i.e. the generation of a mesh with a specific combinatorial
boundary, without concerns for the geometric quality of the ele-
ments [Thurston, 1993; Mitchell, 1996; Eppstein, 1999a; Bern et al.,
2002; Erickson, 2014]. A major source of motivation for this the-
sis is the case of Schneiders’ pyramid [Schneiders, 1995]. It’s long
been established that it is possible to mesh this polyhedron with
topological hexahedra, but known solutions contain many hexahe-
dra of low quality [Yamakawa and Shimada, 2010; Xiang and Liu,
2018] (Figure 3). In particular, it is not clear whether the complex
and irregular structure of these meshes is an inherent requirement
to achieve the boundary connectivity, or if a much simpler solution
has been overlooked. The situation is even more dire in the case of
geometric hex-meshing: it is still open which quadrangular meshes
can possibly be extended to geometric hexahedral meshes, and what

11

1. Introduction

Figure 3: Schneiders’ pyramid, a quadrangular mesh with 16 faces.
Existing solution shown below (left: 88 hexahedra by Yamakawa
and Shimada, right: 36 hexahedra by Xiang and Liu).

12

1.1. Contributions

restrictions a fixed boundary mesh imposes on the quality of such
meshes.

The goal of this work is to build upon those few results and
provide a stronger basis for future robust algorithms. Instead of
attempting to implement hex-meshing software with the current,
limited state of understanding about the problem, this thesis an-
swers or provides new tools to help answer these questions.

1.1 Contributions

As part of this research, several original contributions to the field
of mesh generation were made, namely:

1. proving that combining tetrahedra into hexahedra, a tech-
nique used in a popular class of indirect hex-dominant mesh-
ing algorithms, is NP-Hard, which was previously suspected
but unproven [Meshkat and Talmor, 2000] (Chapter 3);

2. an algorithm to exhaustively search for topological hexahedral
meshes with a given boundary (Chapter 4), which can be used
to locally modify hexahedral meshes (Section 4.2);

3. a more specialized algorithm relying on quad flips to compute
topological hexahedral meshes bounded by spheres (Chap-
ter 5), allowing us to construct hexahedral meshes for any
quadrangulated sphere with up to 20 faces (Section 5.4) and
give a concrete numerical bound on the number of hexahedra
needed to mesh spheres of n quadrangles (Section 5.3);

4. focusing on the problem of Schneiders’ pyramid, we compute
the first geometric mesh of this pyramid, i.e. one made up of
polyhedral cells with planar faces (Chapter 6).

Further related contributions were also published in scientific
journals, though they are not the focus of this monograph:

13

1. Introduction

1. An exhaustive enumeration of all 174 subdivisions of a hexa-
hedron into tetrahedra, and a proof that only 171 of them are
realizable geometrically, with applications to the generation
of hex-dominant meshes [Pellerin et al., 2018b];

2. an algorithm applying combinatorial search to tetrahedral meshes,
focusing on methods to efficiently prune the search space of
possible triangulations [Marot et al., 2020];

3. a method to generate a single layer of hexahedra on the bound-
ary of a domain, by formulating constraints describing the
configurations of adjacent boundary vertices [Reberol et al.,
2023].

All of these contributions involve either code to implement new
algorithms, or the production of new datasets. These results are
made freely available at https://www.hextreme.eu/download.

1.2 Publications

This thesis covers works that were previously published in the fol-
lowing articles:

• Kilian Verhetsel, Jeanne Pellerin, and Jean-François Remacle.
2019a. A 44-element mesh of Schneiders’ pyramid: Bounding
the difficulty of hex-meshing problems. Computer-Aided De-
sign. https://doi.org/10.1016/j.cad.2019.102735 (Best
paper award.)

• Kilian Verhetsel, Jeanne Pellerin, and Jean-François Remacle.
2019b. Finding hexahedrizations for small quadrangulations of
the sphere. ACM Transactions on Graphics (TOG) 38, 4 (jul
2019), 53. 0730-0301 https://doi.org/10.1145/3306346.
3323017

14

https://www.hextreme.eu/download
https://doi.org/10.1016/j.cad.2019.102735
https://doi.org/10.1145/3306346.3323017
https://doi.org/10.1145/3306346.3323017

Chapter 2

The Many Facets of
Hexahedral Mesh
Generation

Due to its industrial applications in a wide range of fields, hexahe-
dral meshing has been studied under many different lenses. We give
some context on the concepts of algebraic and computational topol-
ogy that will be used throughout this work to describe new results,

Figure 4: A geometric hexahedron with planar faces (left), a tri-
linear hexahedron with warped faces (center), and a topological
hexahedron (right).

15

2. The Many Facets of Hexahedral Mesh Generation

Figure 5: Example of a numbering convention for elements in a
mesh.

before reviewing the most common types of hex-meshing methods.

2.1 Background and Definitions

2.1.1 Topological and Geometric Meshes

The main objects discussed throughout this thesis are meshes, vol-
umetric and hexahedral meshes in particular. The properties of
meshes are studied through two interrelated branches of mathemat-
ics: topology and geometry.

The topological properties of a mesh can be derived from its
combinatorial structure, which we call a topological or combinato-
rial mesh (Figure 4). Given a finite set of vertices, we represent
surface meshes as a set of polygons, only storing the incidence rela-
tions between them, e.g. by labeling the vertices and representing
polygons as ordered lists of vertex labels. Similarly, we represent
volumetric meshes by a set of cells (also known as elements). Each
cell is a combinatorial polyhedron, bounded by polygonal facets.
Such cells are encoded, for example, by picking a convention to or-
der their vertices (Figure 5). The intersection of any two cells must
be exactly one face of both cells: the empty set, a vertex, an edge,
a polygonal facet or the cell itself.

This combinatorial object corresponds to a topological space X
using the following construction: each k-dimensional face is rep-
resented by a copy of the unit ball

{
x ∈ Rk | ||x||2 ≤ 1

}
. The k-

skeleton X(k) is the disjoint union of these balls. The boundary of

16

2.1. Background and Definitions

each k-dimensional face (for k > 1) is the union of balls of dimen-
sion (k − 1), corresponding to the boundary facets, and attached
to the skeleton X(k−1) using a gluing map from the unit sphere{
x ∈ Rk | ||x||2 = 1

}
to X(k−1). The topological space X is the

union of its skeletons X =
⋃n

k=0X
(k). Cell complexes are used ex-

tensively in algebraic and computational topology [Munkres, 1984;
Edelsbrunner, 2001; Hatcher, 2002; Kaczynski et al., 2003].

A geometric mesh is one where each cell is a convex polyhedron,
defined as the convex hull of its vertices x1, . . . ,xn:{

n∑
i=1

λixi

∣∣∣∣∣
n∑

i=1

λi = 1 and ∀i.0 ≤ λi ≤ 1

}
Equivalently, convex polyhedra may be defined as the intersec-

tion of half-spaces delimited by the planes that contain their facets,
i.e. they must have planar faces. An extensive discussion on the
properties of convex polyhedra and higher-dimensional polytopes is
found in [Ziegler, 1995].

A geometric realization of a topological mesh assigns coordi-
nates to each vertex such that each cell is a convex polyhedron. A
volumetric mesh is realizable if it has a geometric realization in R3.

For finite elements applications, a less restrictive type of geomet-
ric mesh is used: trilinear hexahedral meshes [Knupp, 1990]. Given
coordinates in R3 for each vertex, a hexahedron whose vertices are
(x000,x001,x011,x010,x100,x101,x111,x110) is defined as the image
of a unit cube under a trilinear map f : [0, 1]3 → R3, obtained
by taking the products of linear functions (denoted F0 and F1),
weighted by the vertices:

f(u, v, w) =

1∑
i=0

1∑
j=0

1∑
k=0

Fi(u)Fj(v)Fk(w)xijk

where

F0(t) = 1− t

F1(t) = t

17

2. The Many Facets of Hexahedral Mesh Generation

Figure 6: (Left) stars and (right) links of vertices in a manifold
(top), on the boundary of a manifold (middle) or in a non-manifold
(bottom).18

2.1. Background and Definitions

A trilinear mesh is valid if every point of the physical domain
is the image of precisely one point under the trilinear maps that
define the mesh. This corresponds to the Jacobian determinant of
f being strictly positive everywhere for every hexahedron (assuming
a convention on the orientation of hexahedral elements).

2.1.2 Manifolds

Cell complexes can describe a wide range of spaces. For meshing
purposes, the domains that we seek to mesh are usually manifolds,
or manifolds with boundary. An n-manifold is a space where each
vertex v has a neighborhood homeomorphic to an open subset of
Rn.

In combinatorial terms, manifolds are characterized in terms of
the links and stars of faces in a cell complex. The star of a face
f , St(f) is the set of all cells that contain f , and all of their faces.
The link of f , Lk(f), is the set of faces in St(f) that do not contain
f . A combinatorial n-manifold with boundary (for n ≤ 3) is a
topological mesh such that the link of every face of dimension k is
homeomorphic to a sphere Sn−k (for interior faces) or a ball Bn−k

(for boundary faces) [Edelsbrunner, 2001; Rourke and Sanderson,
2012]. In particular, the link of each vertex is homeomorphic to
Sn−1 for interior vertices or Bn−1 for boundary vertices (Figure 6).

2.1.3 Dual Meshes

The faces of a topological mesh are partially ordered by a relation
a ⪯ b ⇔ a is a face of b. Reinterpreting a mesh by inverting this
relation yields its dual mesh [Basak, 2010]. Given a surface mesh
M, its dual has one vertex for each polygon in M, and one dual
edge connecting any two dual vertices corresponding to primal poly-
gons that share an edge. Each vertex of the primal mesh M then
corresponds to a polygonal cell of the new dual mesh. The dual of a
volumetric meshM is also a volumetric mesh, each vertex of which
corresponds to a polyhedral cell of the original mesh. Dual edges

19

2. The Many Facets of Hexahedral Mesh Generation

Figure 7: A hexahedral mesh (left) and the corresponding arrange-
ment of dual sheets (right).

connect the vertices corresponding to primal cells that share a facet
and dual facets correspond to primal edges.

For quadrangular and hexahedral mesh, we add structure to
the dual mesh by grouping the dual edges or polygonal facets into
curves or sheets respectively. In a quadrangular mesh, a dual curve
groups all edges corresponding to opposite edges of a combinatorial
quadrangle. In a hexahedral mesh, any two dual polygonal facets
that correspond to parallel primal edges of a combinatorial cube are
grouped together in a dual sheet (Figure 7). The boundary of a dual
sheet is either empty, or one or more dual curves of the boundary
quadrangular mesh.

2.2 What Domains Are Hex-Meshable

Given a quadrangulation, even with a small number of faces, such
as Schneiders’ pyramid, it is often difficult to manually find a hex-
ahedral mesh that fills its interior. This prompted the question of
characterizing the quadrangular meshes that can be extended to
hexahedral meshes.

20

2.2. What Domains Are Hex-Meshable

Figure 8: A quadrangulation that cannot be fileld with hexahedra
(left) because a cross section of the torus contains a triangle, and
one that can be meshed using three hexahedra (right).

For ball domains. Thurston [1993] and Mitchell [1996] inde-
pendently showed that a topological ball bounded by a quadrangu-
lated sphere can be meshed with hexahedra if and only if the number
of quadrangles on the boundary, n, is even. In Mitchell’s proof, an
arrangement of surfaces bounded by the dual arrangement of curves
of the input quadrangulation is first constructed. For curves with
an even number of self-intersections (including curves with no self-
intersections), a disk is constructed inside the domain and a regular
homotopy between a circle and the curve can be used to create
a manifold bounded by that curve. Curves with an odd number of
self-intersections are paired up arbitrarily. For each pair, a manifold
bounded by the two curves is constructed by computing a regular
homotopy between the two of them. This arrangement is not in
general the dual of a hexahedral mesh, so the next step of the con-
struction is to add new surfaces completely inside the ball until all
connectivity requirements of a hexahedral mesh are met.

A linear-complexity solution. The construction of Mitchell
requires up to Ω(n2) hexahedra where n is the number quadrangles.

21

2. The Many Facets of Hexahedral Mesh Generation

Eppstein showed this was the case and proposed a different con-
struction which guarantees the use of O(n) hexahedra [Eppstein,
1999a]. Eppstein’s algorithm first subdivides each quadrangle into
two triangles, so that a tetrahedral mesh of the interior can be com-
puted. After subdividing each tetrahedron into four hexahedra, a
hexahedral mesh is obtained. However, its boundary does not match
the initial input quadrangulation. This is solved by inserting buffer
cells: for each quadrangle, add a cube, and glue one of its face
to the original quadrangle; then, subdivide the opposite face into
six quadrangles. The six new quadrangles are matched with those
obtained from subdividing the original quadrangles during the pre-
vious step. The four remaining sides of the buffer cells are carefully
subdivided into either two or three quadrangles, so that each buffer
cell is bounded by an even number of quadrangles. Mitchell’s proof
can then be invoked to show that each buffer cell can be subdivided
into a finite number of hexahedra.

Generalization to other inputs. Generalizing the previous
results, Erickson [2014] gives necessary and sufficient conditions for
the existence of a hexahedral mesh of a domain Ω bounded by a
quadrangulation Q. The requirement is that every null-homologous
subgraph of the input quadrangulation (i.e. every subgraph which
bounds an embedded surface of Ω) contain an even number of edges
(Figure 8). The construction of Erickson is similar to the one pro-
posed by Eppstein, and also starts by computing a tetrahedral mesh
of the domain, subdividing it into a hexahedral mesh, and insert-
ing buffer cells to get a complete mesh with the correct boundary.
The last step is to subdivide the buffer cells of two different types
(Figure 9) into hexahedra, which is again shown to be possible from
Mitchell’s proof. Neither Eppstein nor Erickson give an explicit
construction of the hexahedral meshes of the buffer cells used in the
algorithm.

A constructive solution. Carbonera and Shepherd [2010]
give the first completely explicit construction. Their algorithm first
adds hexahedra inside the domain, guaranteeing that the dual ar-
rangement of the boundary of the remaining region contain no self-

22

2.2. What Domains Are Hex-Meshable

Figure 9: Hexahedrizations of these two quadrangulated spheres
enable the construction of hexahedrizations for all other quadran-
gulated surface that have one.

intersecting curve. Buffer cells are then inserted to transition to a
mesh where each quadrangle has been subdivided into four quad-
rangles. The rest of the domain is then filled using pyramids. A
complete hexahedral mesh is obtained after subdividing the pyra-
mids into hexahedra. Given a topological ball bounded by n quad-
rangles, their construction produces a mesh of 76 n hexahedra. This
mesh is degenerate: it contains quadrangles sharing multiple edges
and hexahedra sharing multiple faces. A combinatorially valid mesh
can be obtained by further refining the mesh [Mitchell and Tautges,
1994]. This method, however, requires as many as 5396 n hexahedra
to build a hexhahedral mesh bounded by quadrangulation of size n.

Geometric hex-meshing. It remains open whether all quad-
rangulations that admit a topological hexahedral mesh also admit a
geometric hexahedral mesh. Bern et al. [2002] reduced the problem
to finding geometric meshes for all convex polyhedra isomorphic to
a warped bicuboid. Schwartz and Ziegler [2004] were nonetheless
able to explicitly construct a geometric operator to change the par-
ity of any hexahedral mesh. Their construction relies on building

23

2. The Many Facets of Hexahedral Mesh Generation

4-dimensional cubical polytopes with prescribed surfaces in their
dual manifolds.

2.3 How Hex-Meshes Are Constructed

Below is a brief summary of the most popular techniques used to
generate hexahedral meshes. For a more extensive review of mesh
generation techniques, see [Pietroni et al., 2023].

2.3.1 Topological Advancing Fronts

Whisker Weaving. Whisker Weaving has been proposed by Taut-
ges et al. [1996]. The idea is to use a topological advancing front to
construct the dual of a hexahedral mesh with a prescribed bound-
ary. The algorithm initially assumes that the final mesh will contain
one dual surface for each dual curve of the input quadrangulation.
Hexahedra are created inside the domain by creating intersections
between three of these sheets, until the entire domain is filled. To
choose between the multiple possible operations, heuristics based on
geometric information such as the dihedral angle of faces are used.
These heuristics are often not enough to completely fill the domain.

Dual cycle elimination. Müller-Hannemann [1999] proposed
a method based on dual cycle eliminations. At each step of the
algorithm, one of the curves of the dual mesh is removed, matching
this elimination as the insertion of a layer of hexahedra. The new
boundary after removing this cycle bounds the part of the input do-
main which has not been meshed yet. This process is repeated until
the boundary matches that of a single cube. This method succeeds
for certain classes of input quadrangulations, but fails for the com-
mon cases where the dual contains self-intersecting curves. Kremer
et al. [2014] extended this algorithm with heuristics to determine the
elimination order of the dual cycles, taking into accounts geometric
properties to handle concave objects.

24

2.3. How Hex-Meshes Are Constructed

2.3.2 Octree-based Hex-Meshing

Octrees-based methods are a type of automatic hex-meshing algo-
rithm that convert the combinatorial dual of an octree into a hex-
ahedral mesh [Schneiders, 2000; Maréchal, 2009; Gao et al., 2019].
The octree structure is first refined according to the local feature
size. A set of fixed templates is used to transform size-transitions
present in the octree into a valid hexahedral mesh. The choice of
templates directly impacts the quality of the resulting mesh, so they
must be designed carefully to avoid poorly shaped hexahedra [Tong
et al., 2024].

A major challenge for this family of algorithms is to accurately
capture features that are not aligned with the octree. Given a set of
sharp features, octree-based methods can project vertices onto the
sharp features so that they are preserved in the final mesh. This
often requires a high level of refinement in order to capture small
features, limiting the practical applicability of those techniques for
complex inputs.

2.3.3 Frame fields and Hexahedral Mesh Generation

Frame fields assign three mutually orthogonal directions to each
point in space. Lines where this orientation field vanishes are known
as singularities. In meshing terms, these lines correspond to edges
that are surrounded by a number of hexahedra different from four
[Beben, 2020].

Methods based on frame field start by generating a smooth,
boundary-aligned orientation field and attempt to extract a block-
structured mesh whose singularities match that of the frame field
[Nieser et al., 2011; Li et al., 2012; Liu et al., 2018]. Currently, how-
ever, there is no guarantee that the singularities in the generaed
frame-fields correspond to that of a valid hexahedral mesh. Invalid
configurations are generated for most non-trivial models. For exam-
ple, there can be vertices where only two singularities meet, one of
valence three and the second of valence five — which is not a valid
configuration for an all-hexahedral mesh. Liu and Bommes [2023]

25

2. The Many Facets of Hexahedral Mesh Generation

Figure 10: The same domain meshed using PolyCut (left) and an
octree-based approach (right).

formulate the problem so as to avoid such invalid configurations, but
there is still no guarantee the global orientation field corresponds to
a valid hexahedral mesh.

2.3.4 Polycube-Based Methods

Polycubes are solids made up of a finite number of cubes glued
face-to-face. This structure makes it easy to subdivide them into a
regular arrangement of hexahedra. Polycube-based algorithms use
such an arrangement to mesh an object by computing a mapping
between it and a polycube [Gregson et al., 2011; Livesu et al., 2013].
If the distortion of this polycube mapping is low enough, then a
hexahedral mesh of the polycube can be deformed into a valid mesh
of the target model (Figure 10).

Lin et al. [2008] create such polycubes by first segmenting the
input model into different parts corresponding to features of the
input domain. Each part is then approximated by a coarse polycube
chosen from a set of basic primitives. This coarse representation of
the model often results in a high distortion mapping, making it

26

2.3. How Hex-Meshes Are Constructed

unsuitable for meshing applications.
Gregson et al. [2011] instead deform the input model, so as to

align all boundary faces to one of the six axis-aligned directions
(±x, ±y, ±z). The resulting polycube is then meshed with a struc-
tured hexhadedral mesh which is mapped back onto the input shape.
Polycut [Livesu et al., 2013] also uses a deformation-based approach,
but improves the segmentation of the input into axis-aligned patches
using a hill climbing algorithm. This leads to a mapping with less
distortion while requiring fewer irregular vertices. To reduce arti-
facts due to the high sensitivity of parametrization methods to the
mesh embedding, Mandad et al. [2022] propose an intrinsic formu-
lation. Protais et al. [2022] focus on the robust construction of very
coarse meshes from such polycube mappings while still preserving
relevant geometric features.

Even though these method allow the construction of high-quality,
block-structured hexahedral meshes, the deformation process often
results in inverted hexahedra. The regular connectivity of polycube
meshes that does not contain singularities also makes it difficult to
correctly represent certain boundary features.

2.3.5 Hex-Dominant Mesh Generation

For many models, the all-hexahedral methods mentioned so far fall
short of producing a satisfactory hexahedral mesh. Hex-dominant
are a more robust alternative thanks to the inclusion of non-hexahedral
elements, while still filling most of the volume with well-shaped hex-
ahedra.

H-Morph [Owen, 2001] computes a hex-dominant with a pre-
scribed quadrangular mesh as its boundary. The input is a tetrahe-
dral mesh constrained so that its boundary is a subdivision of the
target quad mesh. The algorithm traverses this tetrahedral mesh in
an advancing front fashion, applying local transformations to rear-
range tetrahedra until they can be combined into hexahedra.

More recent hex-dominant meshing techniques directly create
a tetrahedral mesh with its vertices placed so as to facilitate re-

27

2. The Many Facets of Hexahedral Mesh Generation

combination. Such a distribution of vertices is obtained by packing
rectangular cells [Yamakawa and Shimada, 2003], using the Lp Cen-
troidal Voronoi Tesselation [Botella et al., 2016; Lévy and Liu, 2010],
or frontal point insertion [Baudouin et al., 2014]. The tetrahedra
are combined into hexahedra by searching for occurrences of the
triangulations of a hexahedron [Pellerin et al., 2018b]. This search
may rely on an explicit set of templates [Botella et al., 2016; Ya-
makawa and Shimada, 2003], or by traversing the mesh to look for
groups of 12 edges whose connectivity match that of a cube [Pel-
lerin et al., 2018a]. Ray et al. [2018] use an orientation field to guide
the construction of a hex-dominant mesh, extracting the hexahedra
using standard methods [Nieser et al., 2011]. A quad-dominant
mesh of the boundary is computed ahead of time, and hexahedra
that self-intersect or intersect the boundary are excluded. The final
hex-dominant mesh is obtained by filling the leftover space using a
Delaunay triangulation.

The hex-dominant meshes produced by these methods are in
general non-conforming, as they may contain hexahedra that share
a quadrangular face with two tetrahedra. Non-conformities are usu-
ally resolved as a post-processing step. Alternatively, Gao et al.
[2017b] generate a conforming mesh directly by allowing a small
number of cells with arbitrary polyhedra, in addition to hexahedra,
tetrahedra, prisms and pyramids.

2.4 Evaluating and Improving Meshes

A mesh, in order to be useful for any type of physical simulation,
needs to be constituted exclusively of valid elements. Validity of
a hexahedral element can be tested by using the 27 coefficients
of the Bézier decomposition of the trilinear map that defines it.
These provide bounds for the Jacobian of the transform. If these
bounds are not sufficiently tight to determine whether the element is
valid, the hexahedron is recursively subdivided into 8 smaller hexa-
hedra until an unambiguous result is obtained [Johnen et al., 2017].
Marschner et al. [2020] reformulate hexahedron validity as an op-

28

2.4. Evaluating and Improving Meshes

timization problem, solving it using semidefinite programming, to
more efficiently find points where a hexahedron is not locally injec-
tive.

These tests are still relatively expensive so simpler conditions
are often used as a proxy for the validity of hexahedra. Most com-
monly, the Jacobian at the eight corners of the hexahedron is tested
by checking the orientation of the corresponding corner tetrahedra
[Livesu et al., 2015; Knupp, 2001]. It is necessary, but not suffi-
cient, that those eight values be positive for the hexahedron to be
valid. Other tests based on the orientations of between 8 and 64
tetrahedra formed by the 8 vertices of the hexahedron have been
studied empirically by Ushakova [2011], but none offer a necessary
and sufficient condition.

In practice it is not enough for a mesh to be valid in order to
serve a practical purpose: poorly-shaped yet valid elements may
still yield non-physical results in a simulation. No single value fully
captures whether an element is suitable for those simulations, and
instead a wide range of metrics are used to evaluate meshes. These
metrics include the scaled Jacobian, the ratio between the shortest
and longest edges, the solid angles of the corners, measures of the
planarity of faces, etc. [Gao et al., 2017a; Motooka et al., 2011].

There are currently no hex-meshing algorithms that guarantee
the generation of a valid mesh containing only well-shaped elements.
As such, it is common for hexahedral meshing pipelines to include
so-called untangling and smoothing steps to improve the mesh. Dur-
ing untangling, vertices are moved until all elements are valid. The
formulation of Marschner et al. [2020] using optimization techniques
can also be used to repair hexahedral meshes.

29

Chapter 3

The Complexity of Indirect
Hex-Dominant Meshing

The limitations of tooling used to generate all-hexahedral meshes,
combined with the existence of established, industrial software to
generate tetrahedral meshes, makes the following idea tempting:
first generate a tetrahedral mesh of the domain, then combine the
tetrahedra within it to form hexahedra. This is known as an indirect
approach to hexahedral mesh generation. In general, it may not be
possible or practical to combine all tetrahedra of a given mesh into

Figure 11: A hex-dominant mesh. Most of the volume is filled with
hexahedra, but it also contains tetrahedra.

31

3. The Complexity of Indirect Hex-Dominant Meshing

Figure 12: (left) a triangle mesh and its dual graph (dashed edges),
recombined into a quad-dominant mesh (right) that corresponds to
an edge matching (indicated by bold edges).

hexahedra, so the resulting mesh will still contain leftover tetrahedra
as well as other elements such as prisms and pyramids. Such a mesh
is known as hex-dominant (Figure 11).

However, even in the cases where all tetrahedra can be recom-
bined to form an all hexahedral mesh, existing techniques do not
guarantee they will generate such a mesh. Instead of computing
the optimal recombined mesh in terms of the number of hexahe-
dra or their quality, indirect hex-dominant meshing is done using
approximate methods. This chapter demonstrates that maximizing
the number of hexahedra in the recombined mesh is NP-hard, jus-
tifying the established use of heuristics to approximate solutions to
the problem.

3.1 Problem Statement

Different measures can be used to quantify the quality of a recom-
bined mesh to account for the number of cells, their types (tetra-
hedra, hexahedra, prisms or pyramids) and their geometric quality.
The exact objective function used in practice is often application-

32

3.1. Problem Statement

dependent. Throughout this chapter, we will specifically consider
the following formulation: given a tetrahedral mesh T and a qual-
ity threshold q, find the maximum number n of hexahedra with a
minimum scaled Jacobian greater than or equal to q that can be ob-
tained by recombining tetrahedra in T . Any two selected hexahedra
must be compatible, i.e. their intersection must be empty, exactly
one vertex, exactly one edge, or exactly one quadrangular face. We
allow non-conformities in the mesh, allowing one hexahedron to be
adjacent to two tetrahedra. Typically, such invalid connectivity is
addressed after recombination as part of post-processing steps, and
may be penalized in the objective function.

Consider the analogous problem pertaining to surface meshes:
given a triangulation T of a surface, find the maximum number n
of quadrangles that can be obtained by combining triangles in the
original mesh. This question can be answered in polynomial time
by considering the dual graph G of T . The nodes of G are the
triangles in T and an arc in G connects two nodes means that the
corresponding triangles are adjacent in T . n corresponds precisely to
a maximum matching of G (a maximum cardinality set of arcs M in
G such that no two arcs in M share one node), hence the problem for
surface meshes is solvable in polynomial time (Figure 12) [Remacle
et al., 2012; Edmonds, 1965]. Even with a threshold on the quality
of combined elements, a solution can still be found in polynomial
time by removing from G the arcs that correspond to quadrangles
of inadequate quality.

Despite the similarities, the recombination problem for volu-
metric tetrahedral meshes is more challenging: whilst a quadrangle
can only be obtained by merging two triangles that share an edge,
there are 174 different patterns made up of tetrahedra that can be
recombined into one hexahedron [Pellerin et al., 2018b]. This chal-
lenge combined with the additional degree of freedom in volumetric
meshes enables us to simulate other NP-Hard problems.

33

3. The Complexity of Indirect Hex-Dominant Meshing

Figure 13: A tetrahedral mesh used to encode the boolean formula
(x ∨ y ∨ ¬z) ∧ (¬y ∨ z). Colors represent the three variables.

34

3.2. Reduction from 3-SAT

3.2 Reduction from 3-SAT

To show that the problem of recombining tetrahedra into hexahe-
dra is NP-hard, we use a reduction from a well-known NP-Complete
problem, the Boolean satisfiability problem [Karp, 1972]. Specifi-
cally, consider a 3-SAT instance C written as:∧

c∈C
(c0 ∨ c1 ∨ c2)

A 3-SAT instance is a set of clauses where each clause contains
3 literals. Each literal is either a boolean variable xi or its negation
¬xi. C is satisfiable if and only if it is possible to assign either true
or false to each variable such that every clause contains at least one
literal equal to true.

From any 3-SAT instance C, we compute a tetrahedral mesh
T , an integer n and a quality threshold on the scaled Jacobian of
the recombined hexahedra q. X is satisfiable if and only if the
tetrahedra of T can be recombined into at least n hexahedra with
a minimum scaled Jacobian greater than or equal to q.

We construct this mesh in polynomial time. This shows that this
formulation of the recombination problem as a decision problem is
NP-Hard, i.e. as hard as boolean satisfiability and other problems in
NP (section 3.2.4). Following typical approaches to formulate such
reductions [Aloupis et al., 2015], the construction relies on different
gadgets used to simulate components of the 3-SAT instance as a
tetrahedral mesh:

• each variable is represented as a repeating pattern of tetra-
hedra that admits two optimal combinations into hexahedra,
each corresponding to a value assigned to the variable (section
3.2.1);

• each clause is represented by a clump of tetrahedra that can be
combined into one hexahedron in three different ways (section
3.2.2), one for each literal in the clause;

35

3. The Complexity of Indirect Hex-Dominant Meshing

Figure 14: Gadget to encode variables (center), which can be com-
bined into 3 hexahedra in two ways, representing it being set to false
(left) or true (right).

• a T-junction device is used to connect variables to clauses and
avoid self-intersections in the mesh (section 3.2.3).

3.2.1 Encoding of Boolean Variables

Each variable is represented by stacking up layers of the gadget
shown in Figure 14. Each layer can be combined into exactly three
hexahedra optimally in two different ways, one to represent true be-
ing assigned to a variable, one to represent it being false. When two
layers are stacked on top of one another, the optimal combination
corresponds to consistently picking one value for the variable. Cre-
ating a hex-dominant mesh that mixes hexahedra corresponding to
the two different variable states is only possible by using fewer hex-
ahedra per layer or including low-quality hexahedra (Figure 15). A
threshold of 0.6 on the minimum scaled Jacobian is used to preclude
the latter. This same threshold will be used for all other gadgets
we describe.

3.2.2 Encoding of Logical Clauses

Each clause x∨y∨z is represented by 10 tetrahedra that can be com-
bined to form one hexahedron in three different ways (Figure 16).

36

3.2. Reduction from 3-SAT

Figure 15: Two consecutive layers recombined optimally (top left),
changing the state of a variable using low quality hexahedra (top
right) or by skipping part of a layer (bottom left), and using a
hexahedron spanning across both layers (bottom right).

37

3. The Complexity of Indirect Hex-Dominant Meshing

Each of the three hexahedra represents selecting a literal (x, y, or
z) whose value is true.

To ensure the selected literal is consistent with the variable gad-
get, the clause gadget must be connected to three variable gadgets,
so that the only way to optimally combine both the clause gadget
and the variable gadget is if the clause is satisfied.

These constraints are enforced by connecting three of the ver-
tices from the last layer in the variable gadget to the clause. These
three vertices are all part of a single quadrangular face in the hex-
ahedra corresponding to the negation of the corresponding literal
(i.e. the state where x is false if x is included in the clause, and the
state where x is true if ¬x is included instead). They are merged
with three vertices of a single quadrangular face of the hexahedron
used to represent the corresponding literal, while still ensuring that
this hexahedron remains compatible with the two hexahedra corre-
sponding to the other two literals.

3.2.3 T-junctions

The gadgets used to represent clauses need to be connected to the
last layer of a variable gadget, but each variable needs to be con-
nected to multiple clauses. To allow this, we use a third gadget
to create a T-junction in the middle of the stack of layers used to
represent variable.

The T-junction gadget is constructed by adding three tetrahedra
to a stack of two layers of the variable gadget and attaching another
layer in a perpendicular orientation (Figure 18). The resulting tetra-
hedral mesh admits two optimal recombination into 10-hexahedra,
corresponding to the two states a variable can take.

3.2.4 Combining Tetrahedra into Hexahedra is
NP-Hard

Any 3-SAT instance C can be represented by a tetrahedral mesh
T using a polynomial number of the gadgets we described (Fig-

38

3.2. Reduction from 3-SAT

Figure 16: Gadget to encode clauses (top). There are three ways to
combine these and form one hexahedron (bottom).

ures 14,16, and 18): each variable xi is encoded by stacking O(|C|)
layers of the variable gadget. One instance of the clause gadget is
used for each clause. For each occurrence of xi in a clause, two con-
secutive layers are replaced with a T-junction, and more layers are
inserted to connect xi to the clause. C is satisfiable if and only if T
can be recombined into a hex-dominant mesh containing n hexahe-
dra with a minimum scaled Jacobian of at least 0.6, where n is the
sum of the number of hexahedra that each gadget can optimally be
combined into.

By construction, any solution to the original 3-SAT instance
corresponds to such a hex-dominant mesh. To verify that there is
no way to combine T into n hexahedra of sufficient quality when
the formula is not satisfiable, consider the incompatibility graph G.
The nodes of G are the candidate hexahedra that can be obtained
by combining tetrahedra from T . Any two nodes hi and hj of G are
connected if and only if they are incompatible, either because the
corresponding hexahedra geometrically overlap or because they only
share part of face. The graph G can be partitioned into one sub-
graph for each gadget and one sub-graph for each pair of directly
connected gadgets, since no candidate hexahedra span across more
than two gadgets.

39

3. The Complexity of Indirect Hex-Dominant Meshing

Figure 17: A clause (left) is connected to a variable by attaching a
triangle representing one of the three literals (colored) to the cor-
responding variable gadget, merging it with one of two triangles
(right), depending on the sign of the literal.

The maximum number of hexahedra in a hex-dominant mesh
obtained from T is at most the sum of the sizes of the maximum
independent sets of each sub-graph, an independent set of a graph
being a set of nodes none of which are connected by an arc. This
corresponds to ignoring the incompatibility constraints across sub-
graphs. To verify that the optimal number of hexahedra can only
be achieved if the 3-SAT instance C admits a solution, we consider
the sub-graphs that correspond to all pairs of directly connected
gadget G1 and G2. There are only a small number of cases used in
the construction: the connection between consecutive layers of the
variable gadget, the connection between layers and T-junctions, and
the 6 different ways a clause can be connected to a variable gadget
— corresponding to the 3 literals of each clause, and whether or not
any of each of them appears with a negation.

Let G12 be the sub-graph of G that contains all candidate hex-

40

3.2. Reduction from 3-SAT

Figure 18: Gadget to encode branches (center). This submesh is
inserted in between layers of the variable gadget and can be com-
bined optimally into 10 hexahedra to either match the state of the
variable gadget being false (left) or true (right).

ahedra that cross both gadgets. In all cases, we verify that any in-
dependent set that contains a hexahedron h ∈ G12 is sub-optimal,
so that a better local solution can always be obtained by instead
recombining G1 and G2 optimally. Since the optimal number of hex-
ahedra n assumes that all gadgets were combined optimally and the
optimal hex-dominant mesh for each gadget encodes an assignment
for the variables in C, a hex-dominant mesh containing n hexahedra
can only be obtained if C is satisfiable.

This shows our recombination problem is NP-Hard. Because it
is in NP (e.g. one can construct the incompatibility graph G and
compute its maximum independent set), it also follows that it is
NP-Complete.

41

Chapter 4

Searching for
Combinatorial Meshes

Given the computational cost of optimal recombination of tetrahe-
dra into hexahedra shown in the previous chapter, these indirect
approaches cannot be expected to output all-hexahedral meshes.
Nonetheless, a hex-dominant mesh could still be subdivided into an

Figure 19: Left: Schneiders’ pyramid. Right: The octogonal spin-
dle.

43

4. Searching for Combinatorial Meshes

all-hexahedral mesh. If most elements are already hexahedra, this
could result in a mesh of suitable quality. One is then confronted
with the problem of subdividing pyramids into hexahedra [Schnei-
ders, 1995]. Indeed, there are exceedingly simple quad meshes which
do admit hexahedral meshes but finding any solution is extremly
difficult (Figure 19). This chapter introduces a new algorithm to
search for a combinatorial hexahedral mesh with a given bound-
ary [Verhetsel et al., 2019a]. By ensuring the search is exhaustive,
we can either find the smallest hexahedral mesh with the required
boundary (Section 4.1), or prove there are no meshes with fewer
than a certain number of vertices or hexahedra (Section 4.1.4). Op-
erating on a smaller cavity rather than the entire mesh, we’re also
able to compute smaller hexahedral meshes even if the input quad-
rangulation is too complex to find a minimal solution (Section 4.2).

4.1 Enumerating combinatorial hexahedral
meshes

In this section, we describe an algorithm that lists all possible hex-
ahedral meshes with a prescribed boundary. We use this algorithm
to determine lower bounds for the number of vertices and hexahedra
needed to mesh the octagonal spindle and Schneiders’ pyramid. It
is also the key to the local mesh simplification algorithm we propose
in section 4.2.

When discussing the existence of hexahedral meshes or when
enumerating the meshes bounded by a given quadrilateral mesh, we
first ignore geometric issues and consider combinatorial hexahedral
meshes. In a combinatorial hexahedral mesh, the hexahedra are rep-
resented as sequences of 8 integers, where distinct integers represent
distinct vertices. A set of hexahedra defines a valid combinatorial
mesh if all pairs of hexahedra are compatible: their intersection
must be a shared combinatorial face (i.e. one of their 8 vertices,
12 edges, or 6 quadrangular facets) or be empty. Each quadran-
gle is also required to either be on the boundary (i.e. in exactly

44

4.1. Enumerating combinatorial hexahedral meshes

one hexahedron), or in the interior of the mesh (i.e. in exactly two
hexahedra).

4.1.1 Backtrack search algorithm

Given ∂H, a combinatorial quad-mesh of a sphere or a handlebody,
Hmax a maximum number of hexahedra, and Vmax a maximum
number of vertices, our algorithm lists all combinatorial hexahedral
meshes H such that:

• the boundary of H is ∂H,

• the number of hexahedra |H| is at most Hmax,

• the total number of vertices in H is at most Vmax.

This problem we are solving has similarities with problems com-
monly encountered in constraint programming : (i) efficiently filter-
ing a large set of potential solutions and (ii) managing solutions hav-
ing multiple equivalent representations. Our implementation adopts
concepts and strategies from this field. For a more general study of
these problems, we refer the reader to Rossi et al. [2006].

The hexahedra are built one at a time by choosing a sequence
of 8 vertices. At each step, all possible candidates for one of the 8
vertices are considered and the algorithm branches for each possi-
bility. Each branch corresponds to the addition of a vertex to the
current hexahedron. When a complete solution is determined, or
when the search fails (no available candidates to complete a hex-
ahedron), the algorithm backtracks to the previous choice. This
process is repeated until all possibilities have been explored. Algo-
rithm 1 corresponds to the exploration of a search tree (Figure 20)
where each branching node represents the choice of a vertex, and
the leaves represent either solutions or failure points where the al-
gorithm backtracks. The search tree has an exponential size in the
maximum number of hexahedra in a solution. This high complexity
is managed by pruning branches that cannot contain a solution and
by using efficient implementations of all performed operations.

45

4. Searching for Combinatorial Meshes

Figure 20: Searching all quadrilateral meshes of a polygon with up
to one interior point. The search tree leaves are either valid solu-
tions, or correspond to detected failure points where Algorithm 1
backtracks.

4.1.2 Search-space Reduction Strategies

In this section, we describe the key points of our implementation of
Algorithm 1, all of which aim at reducing the search space explored
by the algorithm:

• the order in which the hexahedra are constructed is crucial —
we use an advancing-front strategy and start the construction
of hexahedra from the boundary;

• an efficient filtering algorithm that eliminates candidate ver-
tices that would create incompatible combinatorial hexahedra
in the solution;

46

4.1. Enumerating combinatorial hexahedral meshes

Algorithm 1 Recursive enumeration of the hexahedral meshes of
the interior of ∂H.
Input: ∂H, the boundary; S, a partial solution; C = (C1, . . . , C8),
the sets of candidate vertices for the current hexahedron.

def search (∂H, S,C):
if the boundary of S is ∂H:

Print solution S
else if |S| = Hmax:

Backtrack
else:
C ← filter-candidates(∂H, S,C)
if |C1| = · · · = |C8| = 1:
S′ ← S ∪ {(v1, v2, v3, v4, v5, v6, v7, v8)}
search (∂H, S′, initialize-candidates(S′))

else if mini∈{1,...,8} |Ci| = 0:
Backtrack

else:
i← pick-hex-vertex(C)
for each v ∈ Ci:
C ′ ← C
C ′
i ← {v}

search(∂H, S,C ′)

• a method to manage the high number of symmetries of this
problem, i.e. different representations of the same meshes;

• the order in which the current hexahedron vertices are se-
lected;

• a strategy to use topological invariants in order to filter out
branches that do not contain any suitable solutions.

Advancing-front construction. While the hexahedra of a
combinatorial mesh can be arbitrarily reordered, constructing them

47

4. Searching for Combinatorial Meshes

Figure 21: Each new element must share a face with the front of
boundary faces (red).

in a specific order makes the algorithm significantly faster. We use a
classical advancing front generation strategy and require the hexahe-
dron under construction to share a face with a front of quadrangles.
There are then only four vertices needed to complete a hexahedron.
The quadrangle front is constituted of the interior facets that are in
only one hexahedron, or of boundary facets that are in no hexahe-
dra. At the root of the search tree, it is set to be the boundary ∂H.
An interior facet is added to the front after its first appearance in
the mesh. The facet is removed from the front when it is added to
the partial solution. When the front becomes empty, the boundary
of the solution matches the input (Figure 21).

Filtering out candidate vertices. For each of the eight ver-
tices of the hexahedron under construction, we store a set of candi-
date vertices that could be part of the solution. Some of these ver-
tices would make the current hexahedron incompatible with some
already existing hexahedra. Therefore when initiating the construc-
tion of a hexahedron, or when adding a vertex to a hexahedron,
vertices that cannot be added without creating incompatibilities be-
tween the current hexahedron and the already built hexahedra are
filtered out. The following rules are used to eliminate candidates:

• the sets of edges, quadrangle diagonals, and interior diagonal
of hexahedra are disjoint;

• no two hexahedra may share an interior diagonal;

48

4.1. Enumerating combinatorial hexahedral meshes

5 6

78

1 2

34

7 6

58

1 2

34

Figure 22: Two of the 4! ways to label the 4 interior vertices of this
mesh.

• if one facet diagonal matches an existing quadrangle diagonal,
so must the second one;

• all eight vertices must be different.

To enforce these rules, our implementation tracks three sets of
vertices for each vertex v: the sets of vertices u such that (u, v) is an
edge, the diagonal of a quadrangle, or the diagonal of a hexahedron.
These sets are updated whenever a new hexahedron is created.

Because the execution time of the search algorithm blows up as
the number of vertices increases, the number of vertices each set
contains is always small, making them good candidates for being
represented as bit-sets.

Symmetry breaking. Combinatorial meshes are characterized
by their large number of symmetries, a major challenge when oper-
ating on combinatorial hexahedral meshes. Indeed, a combinatorial
hexahedral mesh has many equivalent representations:

1. interior vertices can be relabelled (Figure 22) — for boundary
vertices, the algorithm uses the same labels as the input;

2. the hexahedra of the solution can be constructed in a different
order (Figure 23);

3. for a given hexahedron, written as an ordered sequence of 8
vertices, there are 1, 680 = 8!/24 ways to reorder these vertices
while leaving then hexahedron unchanged (Figure 24).

49

4. Searching for Combinatorial Meshes

Algorithm 2 Compute the sets candidate vertices
Input: S, a set of hexahedra.
Output: C = (C1, . . . , C8), the sets of candidate vertices for the
next hexahedron.

def initialize-candidates(S):
Let (v1, v2, v3, v4) be some quadrangle that needs to
occur in the mesh.
for each i ∈ {1, . . . , 4}:
Ci ← {vi}

for each i ∈ {1, . . . , 4}:
C4+i ← {0, 1, . . . , Vmax − 1} \ {v1, v2, v3, v4}
\interior-diagonals(vi)

for each j ∈ {1, . . . , 4}:
if i ̸= j:
C4+i ← C4+i \
interior-diagonals(vj) \ edges(vj)

if i = j + 2 mod 4:
C4+i ← C4+i \ quad-diagonals(vj)

return (C1, . . . , C8)

1
2

3

1
3

2

2
3

1

2
1

3

3
1

2

3
2

1

Figure 23: The 3! different ways to number the elements of a 3-
element mesh.

50

4.1. Enumerating combinatorial hexahedral meshes

5 6

78

1 2

34
≈

1 2

34

5 6

78

Figure 24: Two combinatorially equivalent hexahedra.

The advancing front strategy defines the order in which the so-
lution hexahedra are constructed (symmetry 2). This also uniquely
determines the order of vertices in a hexahedron (symmetry 3). To
prevent the relabelling of interior vertices (symmetry 1), we add
value precedence constraints to our problem. A solution H found
by the algorithm can be written as an array of 8|H| integers, writ-
ing down the vertices of each hexahedron in the order in which they
were constructed by the algorithm. In an array, x precedes y when
the first occurrence of x is before the first occurrence of y. Enforcing
a total precedence order on interior vertices, we guarantee that only
one of their permutations is a solution.

Using topological properties during the search. The meshes
that we are searching for, in addition to being valid combinatorial
meshes, need to be meshes of the interior of the input surface. This
implies topological requirements that must be met by any solution.
These requirements are used not only to filter out branches of the
search tree that do not contain any valid meshes, but also to reject
combinatorial meshes of different 3-manifolds with the same bound-
ary. Only topological invariants that can efficiently be computed are
considered during the search, since no efficient algorithms to recog-
nize 3-manifolds are known, even for the 3-sphere [Schleimer, 2011].

At any point, the partial mesh is maintained to be oriented :
every quadrangle that appears in two hexahedra must have an op-
posite orientation in each of them. Whenever one of the faces of the
hexahedron under construction is identified with an existing quad-
rangle because they share a diagonal, the other two vertices are

51

4. Searching for Combinatorial Meshes

Figure 25: (left) A null-homologous 1-cycle in a quad-mesh, bound-
ing 3 quadrangles; (right) a cycle which is not null-homologous,
because it surrounds a hole within the mesh.

selected so that the two quadrangles have opposite orientation.
Meshes of a topological ball, or any hexahedral mesh that could

be used as a subset of a mesh of the ball, have a bipartite graph
[Eppstein, 1999a]. Let A and B be the two parts of the partition.
The sets of candidate vertices are reduced so that edges between two
elements of A or of B are never created. The partition is computed
initially based on the input quadrangulation, and updated every
time a hexahedron is added to the partial mesh.

The last topological property that we use is related to homology
groups, in particular those computed over Z2. A detailed introduc-
tion to homology computations can be found in [Hatcher, 2002]. We
define a k-chain as a set of elements of dimension k — a 1-chain is
a set of edges, a 2-chain a set of quadrangles, and a 3-chain a set
of hexahedra. The boundary of a k-chain C is the (k − 1)-chain
∂C whose elements are the faces contained in an odd number of
elements of C. A k-chain whose boundary is empty is referred to as
a cycle. A k-cycle which is the boundary of a (k+1)-chain is called
null-homologous (Figure 25).

For the domains that we consider, all 2-cycles are null-homologous.
Since hexahedra have an even number of faces, any set of hexahe-
dra is bounded by an even number of quadrangles. Therefore, if a

52

4.1. Enumerating combinatorial hexahedral meshes

100

101

102

103

104

1 2 4 8 16 32 64 128

T
im

e
[s

]

Threads

Parallel enumeration of hexahedral meshes

Octagonal spindle (Vmax = 33)

Schneiders’ pyramid (Vmax = 30)

Ideal scaling

Figure 26: Time to explore a search tree in parallel on a machine
with two AMD EPYC 7551 CPUs (32 cores each, 2 threads per
core). Using 64 threads, the speed-up is of 48 for Schneiders’ pyra-
mid and 52 for the octagonal spindle.

2-cycle containing an odd number of quadrangles is ever created,
the search can backtrack, as it will never be possible to create a set
of hexahedra bounded by this cycle. We therefore compute a basis
for the space of 2-cycles using Gaussian elimination, and verify that
every element of the basis contains an even number of quadrangles.

The utility and correctness of these tests were verified by testing
the implementation using different filtering rules, and analyzing the
topology of the output meshes using Regina [Burton et al., 2023], a
standard piece of software to analyze low-dimensional manifolds.

53

4. Searching for Combinatorial Meshes

4.1.3 Parallel Search

The exploration of a search tree can be parallelized in a natural
way by exploring different subtrees in parallel, making the algo-
rithm much faster on parallel architectures (Figure 26). We use
an approach similar to the embarrassingly parallel search of [Régin
et al., 2013]. The main challenge to overcome is that some subtrees
are multiple orders of magnitude larger than other ones without any
possibility to determine which ones ahead of time.

We solve this issue by attributing many subtrees to each worker
thread, so that all threads must on average perform the same amount
of work. At the start of the search, the tree is explored in a breadth-
first manner until a layer with at least kT subproblems is reached,
where T is the number of threads and k a constant to control the
amount of work per thread (we used k = 4096). The nodes of this
layer are then explored in parallel by independent worker threads
using Algorithm 1.

4.1.4 Lower Bounds for Hex-Meshing Problems

Using Algorithm 1, we computed lower bounds for the number of
vertices and hexahedra required to mesh Schneiders’ pyramid and
the octagonal spindle (Figure 19). The algorithm is run multiple
times, and we increment either Vmax or Hmax between each run. At
each step, we verify that no solution was found by the algorithm.
The time required to compute these bounds increases exponentially
as the bounds become tighter (Figure 27).

The following bounds were proven in this manner:

1. Any hexahedral mesh of Schneiders’ pyramid has at least 18
interior vertices and 17 hexahedra.

2. Any hexahedral mesh of the octagonal spindle has at least 29
interior vertices and 21 hexahedra.

54

4.2. Simplifying Hexahedral Meshes

10−1

100

101

102

103

20 22 24 26 28 30 32

102

104

106

108

1010

10−1

100

101

102

103

20 22 24 26 28 30 32 34

102

104

106

108

1010

10−1

100

101

102

103

4 6 8 10 12 14

102

104

106

108

1010

10−1

100

101

102

8 10 12 14 16 18

102

104

106

108

1010

T
im

e
[s]

Vmax

Bounding Vint for Schneiders’ pyramid
Time

Branches

#
B

ra
nc

he
s

Vmax

Bounding Vint for the octagonal spindle
Time

Branches

T
im

e
[s]

Hmax

Bounding |H| for Schneiders’ pyramid
Time

Branches

#
B

ra
nc

he
s

Hmax

Bounding |H| for the octogonal spindle
Time

Branches

Figure 27: The time to prove lower bounds for the number of interior
vertices Vint and the number of hexahedra H required to mesh a
polyhedron increases exponentially. This is due to the exponential
size of the search tree explored by the algorithm.

4.2 Simplifying Hexahedral Meshes

The algorithm described in the previous section can be used to find
the smallest hexahedral mesh with a given boundary. In this section,
we use this algorithm to improve upper bounds for meshing prob-
lems by locally simplifying an input mesh with the desired bound-
ary. By simplification we mean decreasing the number of hexahedra
(Figure 28). The realized operations may be viewed as a generalized
form of cube flips [Bern et al., 2002] that substitute a set of hex-
ahedra by another set without changing their boundary. However,
instead of a finite set of transformations, the algorithm introduced
in this section automatically determines them at execution time.

Globally minimizing the number of hexahedra in the mesh is a
computationally demanding task. Our algorithm therefore selects a
small subset of the mesh, or cavity, and focuses on modifying the
connectivity of the mesh only within this cavity. Our hexahedral

55

4. Searching for Combinatorial Meshes

Figure 28: The number of elements in a mesh can be reduced by
operating locally on a cavity.

mesh simplification algorithm is based on Algorithm 1. From a
geometric hexahedral mesh it outputs a geometric hexahedral mesh
whose boundary is strictly identical and which has fewer elements.

The mesh simplification procedure has three main steps:

• the selection of a cavity, the group of hexahedra to simplify,
C;

• finding the smallest hexahedral mesh Cmin compatible with the
cavity boundary ∂C and replacing the cavity with this smaller
mesh;

• untangling the hexahedra to determine valid coordinates for
the mesh vertices.

4.2.1 Cavity Selection

The cavity selection algorithm is a greedy algorithm that starts
from a random element of the input hexahedral mesh (Algorithm 3).
When the target size, in terms of number of hexahedra, is reached,
this process stops. The choice of a target cavity size is a trade-
off between the cost of finding the hexahedral meshes of the cavity
and the likelihood that the mesh can be simplified by remeshing
the cavity. Cavities with many hexahedra are more likely to ac-
cept smaller meshes, but the cost of finding the smallest hexahedral
mesh Cmin increases exponentially with the number of hexahedra in

56

4.2. Simplifying Hexahedral Meshes

Figure 29: Replacing the cavity with a valid mesh sharing the same
boundary still produces an invalid mesh by creating two quadrangles
sharing two edges.

the cavity. In practice, we start by considering relatively small cav-
ities containing up to 10 hexahedra, and increase this limit when
no improvement is possible. We require the cavity to contain at
least 4 interior vertices. Indeed, when there are no interior vertices
(e.g. with a stack of hexahedra), it is not possible to remove any
hexahedra. As the number of interior vertices increases, so does the
likelihood that the cavity can be simplified.

4.2.2 Cavity Remeshing

To find a smaller mesh of the boundary of a cavity C, we first solve
the combinatorial problem, i.e. we find the smallest combinatorial
hexahedral mesh of ∂C, and then solve the geometric problem of
finding valid coordinates for the modified mesh vertices.

57

4. Searching for Combinatorial Meshes

Algorithm 3 Recursive enumeration of the hexahedral meshes of
the interior of ∂H.
Input: H, the mesh; n, the size of the cavity.
Output: A cavity C of up to n elements.

def select-cavity (H,n):
h← a random element of H
C ← {h}
while |C| < n:
h← a random element of H \ C sharing

a facet with a hexahedron in C
C ← C ∪ {h}

return C

The combinatorial problem of finding the smallest mesh of ∂C is
a direct application of Algorithm 1 which enumerates all combinato-
rial meshes of a given surface. The maximum number of hexahedra
Hmax of the solution is set to a smaller value than |C|. Changing
the parity of a hexahedral mesh is known to be a difficult operation
[Schwartz and Ziegler, 2004], so we set Hmax to |C|− 2. We also set
the limit to the number of interior vertices Vmax to one less than
the number of interior vertices in C to accelerate the search.

There is a subtle but important difference between meshing a
cavity in an existing mesh and meshing a stand-alone polyhedron:
the hexahedra inside the cavity must be compatible with the other
elements of the input mesh. An example where new elements from
a cavity are not compatible with elements adjacent to the cavity is
given in Figure 29. A 3-element cavity is replaced by 2 quadrangles,
but one of these two quadrangles shares two edges with an existing
element, which is an invalid configuration. To guarantee that the
algorithm does not break the mesh validity, the data structures
used to filter out inadequate vertex candidates (Section 4.1.2) are
modified to take into account the hexahedra that are not part of
the cavity.

58

4.2. Simplifying Hexahedral Meshes

Figure 30: A valid change to the connectivity of the mesh can create
a geometrically invalid mesh, which then requires the vertices to be
moved.

4.2.3 Untangling

The previous step of the algorithm found a new connectivity for
the mesh. The simplified mesh obtained by using this result is not
valid in general because the interiors of hexahedra may intersect
(Figure 30). To obtain a valid geometric mesh we use the untan-
gling algorithm described by Toulorge et al. [2013]. The vertices are
iteratively moved until all hexahedra in the mesh are valid. If the
untangling fails, connectivity changes are undone. The validity of
the final mesh is evaluated with the method proposed by Johnen
et al. [2017].

59

Chapter 5

Flipping Towards
Hexahedral Meshes

In Chapter 4, we introduced an algorithm to compute topological
hexahedral meshes with a given boundary. This algorithm was used
to improve topological meshes by operating on small cavities. On
its own, this search method is not fast enough to compute solutions
for cases where no good topological solution is available except if a
very small solution exists (fewer than around 15 internal vertices).

To address this limitation, we introduce a faster search algo-
rithm that only searches the space of so-called shellable meshes.
The algorithm is based on quad flips, a set of operations to modify
quadrilateral meshes and whose application can be interpreted as
the construction of a hexahedron. Given a quadrangulated sphere
Q, a hexahedral mesh bounded by Q is built by exploring the space
of flipping operations that can be applied to Q. A solution is then
obtained by finding a sequence of operations that transforms Q into
the boundary of a cube (Section 5.1). When this search space is too
large, the algorithm instead searches for a sequence of operations
transforming Q into the boundary of any mesh within a library of
pre-computed hexahedral meshes (Section 5.2).

This algorithm is used to construct combinatorial hexahedral
meshes for all 54, 943 quadrangulations of the sphere with up to 20

61

5. Flipping Towards Hexahedral Meshes

quadrangles and which admit a hexahedral mesh. The computed
hexahedral meshes contain at most 72 hexahedra.

The last contribution in this chapter is to significantly lower the
upper bound on the number of hexahedra needed to mesh arbitrary
domains. The construction of Erickson [2014] is made fully explicit
by computing hexahedral meshes for its two quadrangulated tem-
plates. This proves that an arbitrary ball bounded by n quadrangles
can be meshed using only 78 n hexahedra.

5.1 Finding Combinatorial Meshes Using
Quad Flips

5.1.1 Overview

Given a quadrangulation of the sphere Q, we describe an algorithm
to enumerate all hexahedral meshes bounded by Q and which can be
constructed using quad flips (Algorithm 4). To force the algorithm
to terminate, the search is limited to meshes with a maximum of
Hmax hexahedra and a maximum Vmax of vertices. In Section 5.2,
we then extend the approach to search for hexahedral meshes that
are prohibitively large for an exhaustive search of this kind.

The algorithm detailed in this section does not search the en-
tire space of hexahedral meshes, but only the space of so-called
shellable meshes, which can be explored efficiently using quad flips
(Section 5.1.2). This space is explored in its entirety by considering
all possible sequences of quad flips that correspond to valid hexa-
hedral meshes (Section 5.1.3). Because many different sequences of
flipping operations represent the same mesh, most of this section fo-
cuses on how to account for the symmetries of the input quadrangu-
lation, in order to avoid generating different sequences of quad flips
corresponding to isomorphic hexahedral meshes (Section 5.1.4).

62

5.1. Finding Combinatorial Meshes Using Quad Flips

Algorithm 4 Enumerate shellable hexahedral meshes
def search(Q,H,Hmax, Vmax) :

if Hmax = |H|: return
else if visited-symmetric-counterpart(H):

return (Section 5.1.4)
else if Q ≈ a cube:
h← the hexahedron bounded by Q (Section 5.1.3)
if is-compatible(H,h): output-solution(H ∪ {h})

for each quad flip F :
(Q′, h)← perform-flip (F,Q) (Section 5.1.3)
if num-vertices(H ∪ {h}) > Vmax: continue
if is-compatible(H,h):
search(Q′, H ∪ {h}, Hmax, Vmax)

Figure 31: (top) a shelling of a quadrangulation; (bottom) not a
shelling because a hole is present after inserting the first four quad-
rangles.

63

5. Flipping Towards Hexahedral Meshes

5.1.2 Shellability and Quad Flips

Our method only considers a specific class of meshes: shellable hex-
ahedral meshes. Shellability is an important and useful combinato-
rial concept in the study of polytopes and cell complexes [Ziegler,
1995]. Slightly different notions of shellability are found in the
literature. We use that of pseudo-shellings [Bern et al., 2002] or
topology-preserving shellings [Müller-Hannemann, 1999]. This type
of shelling is an ordering of the hexahedra (H1, H2, . . . ,Hn) of a
hexahedral mesh such that any prefix

⋃
0≤i<k Hi is homeomorphic

to a ball (Figure 31).
This definition implies that any hexahedron Hk must intersect

the union of the previous hexahedra in one of six possible patterns.
Gluing a hexahedron to one of these patterns modifies the boundary
of the mesh locally (Figure 32). The transitions between these pat-
terns are known as quad flips or bubble moves [Funar, 1999]. These
flipping operations are therefore a valuable building block to explore
the space of shellable meshes.

Note that not all combinatorial meshes admit a shelling order
(Figure 33) [Lutz, 2003]. Hence, by relying on these flipping opera-
tions to build hexahedral meshes, our method is inherently unable
to construct certain meshes. Nonetheless, we can guarantee that a
solution still exists: all quadrangulations of the sphere with an even
number of quadrangles admit a shellable hexahedral mesh [Bern
et al., 2002].

5.1.3 Identifying and Performing Flips

For each quadrangulation Q visited during the search, all possible
quad flips need to be identified. Each flip corresponds to a differ-
ent hexahedron that can be inserted in the mesh. The algorithm
successively tries adding all of them to the current mesh. Because
flips are performed by starting from the target boundary, the hexa-
hedra that are constructed during this process form the reverse of a
shelling order. Müller-Hannemann [1999] construct the hexahedra

64

5.1. Finding Combinatorial Meshes Using Quad Flips

in the same order, but our method, instead of only considering one
mesh, explores the entire tree of possible sequences of quad flips.

The identification of all possible flips is split into two steps:
first, the boundary Q is inspected to identify all occurrences of the
6 patterns from Figure 32. Second, those flips that correspond to
the insertion of hexahedra that would make the mesh invalid are
filtered out.

The hexahedron inserted by performing a flip is obtained by
computing the union of the pattern before and after the flip. To
determine whether or not this hexahedron is compatible with the
mesh constructed so far, an efficient test is devised by considering
three relations between the vertices of the mesh:

1. E, the edges of the mesh;

2. DQ, the diagonals of the quadrangles in the mesh;

3. DH , the interior diagonals of the hexahedra in the mesh.

These relations are disjoint in any combinatorial hexahedral
mesh. For example, if a pair (u, v) is an edge, it is not the di-
agonal of any quadrangles or hexahedra. This leads to an efficient
implementation of the test: simply maintain the three sets E, DQ,
and DH , represented as bitsets, and verify that, after adding a new
hexahedron:

1. the three sets E, DQ, and DH remain disjoint;

2. the new quadrangles in the hexahedron share no diagonals
with any other quadrangle in the mesh;

3. none of the four interior diagonals of the new hexahedron are
an interior diagonal of some other hexahedron.

It is easy to verify that when any two hexahedra share only a
vertex, an edge, or a quadrangle, these conditions are met. To verify
their sufficiency, consider two hexahedra with an invalid intersection

65

5. Flipping Towards Hexahedral Meshes

Figure 32: Equivalence between quad flips and hex creation. Adding
one hexahedron glued to the red quadrangles (top row), modifies
locally the quads and results in the grey quadrangles (bottom row).
This operation is the key idea of the algorithm to search shellable
meshes.

66

5.1. Finding Combinatorial Meshes Using Quad Flips

pattern. If an interior diagonal of one hexahedron is contained in
the other hexahedron, one of the rules is always violated: rule 3 is
violated if it is also an interior diagonal of the second hexahedron,
and rule 1 is violated if it is an edge or the diagonal of a quadrangle.
The only remaining cases to consider are those where the shared
vertices are part of two distinct quadrangles. In all of those cases,
the diagonal of one of those quadrangles appears in the other one.
If it appears as an edge, rule 1 is violated; if not, both quadrangles
have a shared diagonal, violating rule 2.

The insertion of the last hexahedron requires special treatment.
This step does not correspond to a quad flip: when the boundary
of the unmeshed region is isomorphic to the boundary of a cube, a
hexahedron is inserted to finish the mesh. Detecting whether or not
the current boundary corresponds to that of the cube is straightfor-
ward: simply verify that the boundary has exactly 6 faces.

5.1.4 Symmetry

There are many distinct sequences of quad flips which represent
identical hexahedral meshes. It is thus important to only consider a
single representation for each hexahedral mesh constructed during
the search, lest most of the computation time be spent generating
different representations of equivalent solutions.

One technique commonly used to deal with this type of issue
is to define a canonical representation for objects under construc-
tions, so that all those that belong to a given isomorphism class are
transformed into the same representative element [Burton, 2011;
Brinkmann and McKay, 2007]. A significant portion of the execu-
tion time is then spent computing the canonical representations of
partial solutions, which may completely change after every oper-
ation [Jordan et al., 2018]. The symmetry breaking method used
within our algorithm instead compares partial solutions directly,
and exploits the tree-shaped structure of the search in order to reuse
results from previous computations.

The strategy described in this section is based on Symmetry

67

5. Flipping Towards Hexahedral Meshes

Figure 33: Vertex-minimal example of a non-shellable tetrahedral
mesh of the 3-ball, computed by Lutz.

68

5.1. Finding Combinatorial Meshes Using Quad Flips

Breaking via Dominance Detection (SBDD) [Fahle et al., 2001].
Consider the search tree explored by the algorithm: its nodes are
partial meshes constructed during the search, and edges correspond
to the insertion of new hexahedra through quad flips. The objective
is to prune from this search tree nodes that correspond to meshes
that have already been explored (up to symmetry). This is accom-
plished using the following steps:

1. first, the automorphism group of the input quadrangulation
is pre-computed;

2. then, as the search tree is traversed, fully explored subtrees
are encoded into a sequence S;

3. for each new node, we determine whether or not it should be
pruned by comparing it against the nodes stored in S.

5.1.4.1 Computing the Automorphism Group

Given a quadrangulation Q, we compute the set of its symmetries,
known as its automorphism group. A permutation σ of the vertices
of Q is a symmetry if it preserves the set of quadrangles: for any
quadrangle (a, b, c, d) of Q, its image (σ(a), σ(b), σ(c), σ(d)) is also
quadrangle of Q, and every quadrangle (a, b, c, d) is the image of a
quadrangle (σ−1(a), σ−1(b), σ−1(c), σ−1(d)). Note that the orienta-
tions of the quadrangles may be reversed by σ.

Symmetries are computed one at a time, by fixing some quad-
rangle qA ∈ Q and assuming that its image under a symmetry σ is
known to be qB ∈ Q. There are 8 different ways to map the vertices
of qA onto the vertices of qB, corresponding to the 8 symmetries of
a quadrangle. The entire permutation σ is uniquely determined by
this part of the map (Figure 34): the quadrangles adjacent to qA
must be the images of the quadrangles adjacent to qB under σ, and
the quadrangles adjacent to those must also be images of each other,
and so on, until the whole quadrangulation has been traversed (Al-
gorithm 5). This process is well-defined because each edge is in at
most two quadrangles.

69

5. Flipping Towards Hexahedral Meshes

Figure 34: Computation of a symmetry. Starting from the assump-
tion that a quadrangle is the image of some other quadrangle, the
mesh is traversed while computing the correspondence between all
other vertices.

70

5.1. Finding Combinatorial Meshes Using Quad Flips

Algorithm 5 Computes one symmetry from an initial assumption
Input: Q: A quadrangulation of the sphere; a quadrangle q0 ∈ Q;
(x, y, z, w), the image of q0
Output: The symmetry σ that maps q0 to (x, y, z, w)

def compute-symmetry(Q, q0, (x, y, z, w)) :
Initialize σ, mapping q0 to (x, y, z, w)
Initialize a queue with the 4 edges of q0
visitedA ← {q0}
visitedB ← {(x, y, z, w)}
seen← {q0}
while the queue is not empty:

Dequeue an edge (a, b)
q ← the quadrangle containing (a, b)

and not in visitedA
q′ ← the quadrangle containing σ(a, b)

and not in visitedB

for each vertex v in q:
v′ ← the corresponding vertex in q′

if σ(v) and σ−1(v′) are undefined:
σ(v)← v′ (Extend the map σ)
σ−1(v′)← v

else if σ(v) ̸= v′ or σ−1(v′) ̸= v:
fail (Stop upon contradiction)

for each edge e of q:
o← the quadrangle on the other side of e
if o has not been seen before:
seen← seen ∪ {o}
Enqueue e

visitedA ← visitedA ∪ {q}
visitedB ← visitedB ∪ {q′}

return σ

71

5. Flipping Towards Hexahedral Meshes

The entire set of symmetries is computed by considering all 8|Q|
possible ways to map an arbitrary quadrangle qA to any other quad-
rangle of Q. If an assumption is correct, a symmetry σ is obtained;
if not, a contradiction will be reached when trying to construct the
symmetry (two vertices mapping onto the same target vertex, or a
single vertex with two images under σ). Because qA must be the im-
age of some quadrangle under any symmetry σ, this process yields
the entire automorphism group.

In the worst case, the entire automorphism group is determined
in O(|Q|2) operations. In practice, this quadratic time algorithm
outperforms more complex linear time algorithms designed for pla-
nar graph isomorphism [Eppstein, 1999b; Colbourn and Booth, 1981]
when applied to small quadrangulations, thanks to well-tuned heuris-
tics. In particular, our implementation stops the algorithm as soon
as two vertices of different degree are mapped onto one another by
the permutation under construction [Brinkmann and McKay, 2007].

Moreover, because this method does not use the planarity of the
graph, it is also more general. The only requirement is that the
input be a pseudomanifold : a combinatorial cell complex in which
every facet is contained in at most two distinct cells. Indeed, a
variant of this method will be used to compare hexahedral meshes
in section 5.1.4.3, by having quadrangles take over the role of edges
in Algorithm 5.

5.1.4.2 Encoding the Search Tree

An efficient traversal of the search tree requires the search to stop as
soon as the mesh under construction is the symmetric counterpart
of a mesh that has previously been constructed. In the previous
section, the set of symmetries that need to be considered was deter-
mined. This section now focuses on efficiently encoding the set of
hexahedral meshes that have been constructed during the search.

Of course, the search tree is exponentially large, making it im-
possible to store every single mesh that is constructed during the
search. Instead, SBDD only stores information about the roots of

72

5.1. Finding Combinatorial Meshes Using Quad Flips

H1 H2 H3 H4

H5 H6

H7 H8

H1 H2 H3 H4

é

H5 H6

é

H7

Figure 35: A partially explored search tree and the sequence used to
compare the current node (in white) against the previously explored
part of the tree. No-goods are shown in red, and partially explored
subtrees in blue.

maximal fully explored subtrees, known as no-goods [Gent et al.,
2006]. The current node should then be pruned if and only if the
mesh under construction is the symmetric counterpart of one of the
children of one of the no-goods. Note that a no-good is referred as
such even if some of its children are solutions, since it is not desirable
to compute the symmetric counterparts of those solutions.

No-goods can be stored efficiently thanks to the structure of the
search tree. Recall that each node within the search tree corresponds
to a partial hexahedral mesh, and each edge corresponds to the
insertion of a hexahedron. Nodes with a common ancestor in the
tree then share a common set of hexahedra as a prefix, and this
prefix only needs to be stored once (Figure 35). Upon visiting a
new node, the most recently added hexahedron is inserted in the
sequence, followed by a special branching symbol, indicating that
the rest of the sequence will encode the children of this node. Upon
backtracking, everything up to and including the last branching
symbol of the sequence is removed.

73

5. Flipping Towards Hexahedral Meshes

5.1.4.3 Dominance Detection and Pruning

The last part of our symmetry breaking method is the test used
to prune nodes of the search tree that do not need to be explored
because any solution that could be found by doing so has already
been found. These nodes are said to be dominated by one of the
no-goods, i.e. they are the symmetric counterpart of one of the
children of one of the nodes that have been previously explored and
stored in the sequence shown in Figure 35.

Since the search involves exploring exponentially many nodes,
this dominance test must be implemented without explicitly com-
paring the current node against all previously explored nodes. In-
stead, this test is broken down into two steps: first find a no-good
such that all its hexahedra are contained in the current partial solu-
tion, then determine if the hexahedra that are in the partial solution
but missing from the no-good could be inserted using flipping oper-
ations. The sequence S constructed in the previous section is very
valuable for this: not only does it save space by factoring out a
common prefix, but it also saves time by allowing this prefix to be
processed only once.

Let H be the current partial solution. The first step is to search
within S for a partial mesh whose hexahedra are a subset of H (Al-
gorithm 6). The process to find such a partial mesh is similar to the
algorithm used to compute the automorphism group initially (Sec-
tion 5.1.4.1). The goal is to construct σ, which maps the vertices
of some partial mesh encoded in S to vertices of the current solu-
tion H, such that all hexahedra in the no-good are preserved by the
map σ. The construction of σ again begins from an initial assump-
tion, namely that the images of all boundary vertices through σ
are known. Because boundary quadrangles must be preserved by σ,
the set of possible initial assumptions is precisely the automorphism
group that was previously computed.

Algorithm 6 is executed once for each element of the automor-
phism group and consists in a traversal of S during which the map
σ is extended. The process ends either upon finding a partial mesh

74

5.1. Finding Combinatorial Meshes Using Quad Flips

Algorithm 6 Determine whether or not a partial mesh contains
the symmetric counterpart of a previously visited node
Input: S: an encoding of the part of the search tree explored so
far (Figure 35); H: a partial mesh; σ: a symmetry of the target
boundary.
Output: true if H contains the symmetric counterparts of all the
hexahedra of a fully explored subtree encoded in S

def contains-no-good(S,H, σ):
seen← ∅
for each hexahedron h ∈ S:
success← true
q ← a quadrangle of h whose image through σ is known
q′ ← σ(q)
h′ ← a hexahedron in H containing q′ and not in seen

if there is such a hexahedron h′:
(σold, σ

−1
old)← (σ, σ−1)

for each vertex v of the quadrangle of h opposite to q:
v′ ← the corresponding vertex in h′

if σ(v) and σ−1(v′) are undefined:
σ(v)← v′ (Extend the map σ)
σ−1(v′)← v

else if σ(v) ̸= v′ or σ−1(v′) ̸= v:
success← false
break (Stop upon contradiction)

if success:
seen← seen ∪ {h′}

else:
(σ, σ−1)← (σold, σ

−1
old)

else:
success← false

if the symbol after h in S is the branching symbol:
(All subsequent no-goods contain h.
The search is aborted if its symmetric
counterpart is not present.)
if success is false: return false

else if success:
return true (no-good contained in H)

return false

75

5. Flipping Towards Hexahedral Meshes

contained in H or upon reaching a contradiction. For each hexahe-
dron h found in S, we attempt to extend σ such that h maps to some
hexahedron of the current solution H. Each hexahedron created by
a quad flip shares at least one quadrangle with the boundary or with
a previously created hexahedron. Because of this, each hexahedron
in S has at least one quadrangle whose symmetric counterpart is
known. It is therefore possible to search for the hexahedron h′

within the current solution H that contains this quadrangle (and
has not already been determined to be the symmetric counterpart
of another hexahedron).

Clearly, containing all hexahedra from some no-good is a re-
quirement for a node being dominated – all children of the no-good
share this common prefix. There could still be cases where none
of the children of this no-good contain all the hexahedra that are
in the current node. In other words, it may be impossible to find
a sequence of quad flips which inserts the missing hexahedra when
starting from the no-good. Testing for the existence of such a se-
quence may appear intractable at first, because shellability is an
NP-complete property [Goaoc et al., 2018]. Thankfully, a correct
test only needs not to produce any false positives, since false posi-
tives are the only reason a part of the search tree would incorrectly
get pruned, causing solutions to be missed. Furthermore, because
shellable meshes tend to accept many different shelling orders, there
is a straightforward algorithm meeting this requirement and which
very often computes the correct result: try a small number of per-
mutations (say 10), then give up if no reverse shelling order was
found (Algorithm 7).

5.2 Finding Larger Solutions using
Pre-Computed Meshes

The exhaustive search described in the previous section can only
be used with small limits on the maximum number of hexahedra,
because of its exponential execution time. In many cases, finding

76

5.2. Finding Larger Solutions using Pre-Computed Meshes

Algorithm 7 Determine whether or not a sequence of quad flips
can create a given set of hexahedra
Input: Q: a quadrangulation of the sphere; H: a set of hexahedra;
M : maximum number of permutations to test.
Output: true if a sequence of quad flips was found.

def try-reverse-shell(Q,H,M):
if H = ∅: return true
for each h ∈ H:

if h can be added by performing a quad flip
or Q is a cube:
Q′ ← the boundary after removing h
if try-reverse-shell(Q′, H \ {h},M):

return true
else:

Increment the number of tested permutations

if M permutations or more have been tested:
return false

return true

a complete shelling by searching exhaustively is too difficult: the
sequence of flips to construct the smallest solution is too long, and
the search tree contains many paths which transform the initial
boundary into one which is more difficult to mesh, instead of being
closer to a solution.

Instead of searching for a sequence of quad flips that transforms
the initial boundary Q into a cube, the key idea for solving larger
cases is to stop the algorithm when a known configuration is found
(Figure 36). For that purpose, we compute all boundaries that can
be shelled with at most n hexahedra (say n ≤ 11). Using a list of
all such boundaries and one of their shellings (Section 5.2.1), this

77

5. Flipping Towards Hexahedral Meshes

Figure 36: By precomputing quad meshes with up to three quad-
rangles (right), a search for all shellables meshes of an input polygon
(left) can end three steps earlier. This idea generalizes to shellable
hexahedral meshes.

variant of the algorithm can efficiently look up boundaries in the list
during the search. This allows complete solutions to be constructed
from any sequence of flips leading to any of the boundaries in the
pre-computed set.

5.2.1 Computing Small Shellable Meshes

Consider the flip graph for quadrangulations of the sphere: its nodes
represent quadrangulations of the sphere, and arcs between these
nodes represent a flip between two quadrangulations. A breadth-
first traversal of this graph starting from the cube and stopped at
depth n generates all quadrangulations that can be obtained using
a sequence of up to n flips. To deal with cycles in this graph, previ-
ously visited quadrangulations are stored in a hash table. The hash
value for quadrangulations is constructed from a signature based on
the valence of vertices, and the isomorphism test for two quadran-
gulations is performed using a variation on Algorithm 5 where the
two starting quadrangles are part of different quadrangulations.

The signature used by our algorithm is a histogram of the va-

78

5.2. Finding Larger Solutions using Pre-Computed Meshes

Algorithm 8 Generate small shellable hexahedral meshes
Input: n: maximum size for the generated hexahedral meshes
Output: H: a set of hexahedral shellings with up to n hexahedra
in each mesh.

def generate-shellings(n):
S ← ∅
H ← ∅
Q← new-queue()
enqueue(Q, Cube)
while Q is not empty:
H ← dequeue(Q)
H ← H∪ {H}
for each quad flip F :
(B, h)← perform-flip (F, ∂H)
if is-compatible(H,h) ∧B ̸∈ S:
S ← S ∪ {B}
enqueue(Q,H ∪ {h})

return H

lences of each vertex, followed by the number of edges connecting
vertices of valence va and valence vb, for any va and vb where this
number is non-zero. While this choice of signature causes collisions,
it can be computed quickly and new entries can be inserted without
necessarily needing a slower computation to find a unique canonical
representation.

Not all quadrangulations generated in this breadth first search
admit a shelling with up to n hexahedra: interpreting the flips per-
formed during the traversal of the graph as the insertion of hexa-
hedra, these hexahedra may not all be compatible. By explicitly
testing for compatibility while performing the breadth first search
(Algorithm 8), we obtain a greedy construction similar to the pro-

79

5. Flipping Towards Hexahedral Meshes

Hmax # quad meshes timing
1 1 < 0.1 s
2 2 < 0.1 s
3 5 < 0.1 s
4 17 < 0.1 s
5 74 < 0.1 s
6 489 < 0.1 s
7 4,192 0.12 s
8 42,676 1.78 s
9 476,520 34.418 s

10 5,632,488 14 min 55 s
11 69,043,690 6 h 41 min

Table 5.1: Number of combinatorial quadrangulated boundaries
that can be shelled with up to Hmax hexahedra. Timings are given
for a single thread on an Intel® Core™ i7-7700HQ CPU.

cedure outlined by Xiang and Liu [2018]: the hexahedra that are
found are those which admit a shelling such that any prefix is the
smallest shellable hexahedral mesh for the corresponding boundary.
For large values of n, it is not clear that such a shelling should
always exist, but we can verify this property for small values of
n. For every quadrangulation found during the breadth-first search
but without a hexahedral mesh found by Algorithm 8, Algorithm 4
is used to verify that there is indeed no shellable hexahedral mesh
with at most n hexahedra. This test was performed for n ≤ 10, and
no counter-examples were found.

From Algorithm 8, a table of 69, 043, 690 boundaries that can be
meshed with up to 11 hexahedra is constructed (Table 5.1). These
results also coincide with those obtained by Xiang and Liu [2018].

80

5.2. Finding Larger Solutions using Pre-Computed Meshes

Figure 37: Insertion of a buffer layer to guarantee final mesh validity
when using precomputed cavity meshes. (left) Simply adding two
quadrangles (red) inside a cavity creates an invalid mesh where pairs
of quads share more than one facet; (right) inserting a layer of buffer
quads (light gray) allows the use of the same (combinatorial) quads
to fill the cavity and produce a valid mesh.

5.2.2 Using the Pre-Computed Table

If at any point during the search, the boundary of the unmeshed re-
gion matches one of the pre-computed quadrangulations, the shelling
of that quadrangulation is used to finish the meshing of that region.

The idea is to use the shelling computed in the previous section
to fill the unmeshed region. Simply combining the two solutions
is not always possible: this may produce an invalid mesh where,
for example, two hexahedra share multiple quadrangles (Figure 37).
Algorithm 4 could be used to compute all shellings of the unmeshed
region with up to n hexahedra. If this search finds a shelling com-
patible with the partial solution constructed so far, a solution can
be generated, at the cost of an additional computation.

Even if no such shelling was found, a solution can be constructed
from any shelling of the unmeshed region, without performing an ad-
ditional search or storing multiple hexahedrizations for each bound-
ary: first construct a copy of the boundary of the unmeshed region,
then, for each quadrangle of this boundary, create a hexahedron to
connect each quadrangle to its copy. The hexahedra that have been

81

5. Flipping Towards Hexahedral Meshes

inserted in this manner are guaranteed to be compatible with any
hexahedrization of the unmeshed region, allowing a complete mesh
to be constructed. When this approach is used, the first solution
found by the algorithm is not in general the smallest. However,
when the smallest solution contains a large number of hexahedra,
this approach can construct solutions in many cases where methods
with stronger guarantees fail to find any, because it adds several
hexahedra without branching.

Efficient access to the pre-computed table is performed using
a binary search. We create an array of all the quadrangulations
we found, sorted by their signatures. To find the hexahedral mesh
corresponding to a given quadrangulation, its signature is computed
and an isomorphism test is performed on all quadrangulations in the
table that have the same signature.

5.3 A Constructive Solution for Constrained
Hex-Meshing

Only one previous solution to the constrained hexahedral meshing
problem gives a completely explicit construction [Carbonera and
Shepherd, 2010]. This method requires 5396 n hexahedra to con-
struct a valid mesh bounded by n quadrangles. In the following, we
prove that this bound can be lowered to 78 n using the construction
proposed by Erickson [2014].

Using our search algorithm (Section 5.2), we found hexahe-
dral meshes for both types of buffer cells that Erickson’s construc-
tion needs (Figure 38), along with geometric realizations using lin-
ear hexahedra obtained by applying existing mesh untangling tech-
niques [Toulorge et al., 2013; Livesu et al., 2015], although the so-
lutions have a very low minimum scaled Jacobian (Table 5.2). The
meshes that we found contain 37 and 40 hexahedra. Because gluing
multiple buffer cells together as needed by the construction would
create a degenerate mesh, a hexahedron is added on each boundary
quadrangle. The resulting meshes of the buffer cells have 57 and 62

82

5.3. A Constructive Solution for Constrained Hex-Meshing

Figure 38: Hexahedrizations of the two types of buffer cubes used
to mesh arbitrary domains in the algorithm of Erickson. (top) 37
hexahedra to mesh the 20-quadrangle cell; (bottom) 40 hexahedra
to mesh the 22-quadrangle cell. Colors correspond to the different
sides of the original cubes (shown on the left).

83

5. Flipping Towards Hexahedral Meshes

Template |Q| |Vbnd| |H| |Vtotal|
edges by valence Scaled Jacobian
3 4 5 min max median

Tetragonal trapezohedron 8 10 40 52 40 75 4 0.35 0.42 0.38
Schneiders’ pyramid 16 18 36 51 32 62 4 0.12 0.49 0.26
Erickson’s buffer cell (1) 20 22 37 53 43 49 4 0.31 0.63 0.42
Erickson’s buffer cell (2) 22 24 40 55 44 48 9 0.031 0.45 0.41

Table 5.2: Statistics for the geometric meshes constructed for diffi-
cult test cases.

hexahedra respectively, giving the following result:
Let Ω be a compact and connected subset of R3 bounded by a

2-manifold ∂Ω. Given a quadrangulation Q of ∂Ω, each component
of Q containing an even number of quadrangles, and a triangulation
T of Ω (splitting each quadrangle of Q into two triangles), if there
is a combinatorial hexahedral mesh of Ω bounded by Q, then there
is one with no more than 62|Q| + 8|T | hexahedra. In particular,
if Ω is a ball (hence ∂Ω is a sphere) and |Q| is even, there is a
combinatorial hexahedral mesh bounded by Q with no more than
78|Q| hexahedra.

Proof. Follow the construction of Erickson [2014] using the tem-
plates that we computed. There is one buffer cell for each bound-
ary quadrangle, and each tetrahedron of the triangulation T is split
into 4, 7, or 8 hexahedra. In the worst case, each buffer cell will be
meshed with 62 hexahedra, and each tetrahedron will be split into
8 hexahedra.

If Ω is a ball, there is always a triangulation T with 2|Q| tetra-
hedra, obtained by arbitrarily splitting each quadrangle into two
triangles, adding a vertex inside the domain, and joining each tri-
angle to this new vertex by a tetrahedron. The bound for this special
case is therefore 62|Q|+ 8× 2|Q| = 78|Q|.

A similar bound can be obtained for quadrangulations with an
odd-number of quadrangles in some of their components. In that
case, hexahedra are added to connect pairs of odd components, and
the previous result is used to compute the number of hexahedra to
mesh the rest of the domain.

84

5.4. Hexahedrizations for Small Quadrangulations of the Sphere

Figure 39: The trapezohedra are a family of polyhedra with two
poles, each incident to n faces. They are usually difficult cases to
mesh with hexahedra.

5.4 Hexahedrizations for Small
Quadrangulations of the Sphere

We used the algorithm described in section 5.2 to compute hexa-
hedrizations for all even quadrangulations of the sphere containing
up to 20 quadrangles (Table 5.3). The 54, 943 input quadrangula-
tions were generated using plantri [Brinkmann et al., 2005]. We
pre-computed shellable hexahedral meshes with up to 11 hexahe-
dra. Of the 69, 043, 690 boundaries that were pre-computed, only
130 are included in the list of inputs. Nonetheless, in about 20%
of all instances, the search for a solution terminates almost imme-
diately after loading the set of pre-computed solutions (Figure 40).
Only a few additional seconds are enough to find hexahedrizations
bounded by most quadrangulations of the sphere. There are how-
ever some more difficult cases, requiring over an hour of computation
time (Figure 42). The trapezohedron bounded by n faces, obtained
by generalizing the tetragonal trapezohedron (Figure 39) is usually
among the most difficult cases of a given size, requiring meshes with
an intricate internal structure in order to be filled. For example,

85

5. Flipping Towards Hexahedral Meshes

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

S
o
lv

e
d

 m
e
sh

e
s

[%
]

Time [s]

Time to compute hexahedrizations

Figure 40: Time to compute hexahedrizations for all quadrangula-
tions of the sphere with up to 20 quadrangles. Run on a machine
with two AMD EPYC 7551 CPUs (32 cores per CPU).

the smallest solution found for the 20-face decagonal trapezohedron
contained 72 hexahedra, strictly more than any of the other bound-
aries (Figure 41). Similarly, the 16-face octagonal trapezohedron
required 67 hexahedra, with the decagonal trapezohedron being the
only boundary for which all solutions found were larger. The trape-
zohedra are also among the boundaries that require the most time
before any solution could be found. The 14-face heptagonal trape-
zohedron is the second most time consuming input, requiring 2h
50min, and the 20-face decagonal trapezohedron is the third, re-
quiring 2h 43min. In the worst case, shown on Figure 42, it took
6h 15min before a 58-element mesh was found.

5.5 Small Non-Shellable Hexahedral Meshes

Chapter 4 described a generic search method for hexahedral meshes.
This chapter has focused solely on the search for shellable meshes.

86

5.5. Small Non-Shellable Hexahedral Meshes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

#
 b

o
u
n
d

a
ri

e
s

Minimum # hex

Sizes of the smallest hexahedrizations found

Figure 41: Time to compute hexahedrizations for all quadrangula-
tions of the sphere with up to 20 quadrangles. Run on a machine
with two AMD EPYC 7551 CPUs (32 cores per CPU).

Q
|H| |Vtotal| %edges by valence

min max med min max med 3 4 5 6
6 1 8 (none)
8 44 56 48 34 16 2
10 2 58 36 12 64 48 39 45 15 1
12 3 47 43 14 57 52 38 50 11 1
14 3 59 44 16 73 55 38 48 12 1
16 4 67 45 18 77 56 37 51 11 1
18 4 67 46 20 79 58 38 49 12 1
20 5 72 47 22 81 59 38 49 12 1

Table 5.3: Statistics for the combinatorial meshes computed for all
even quadrangulations of the sphere with up to 20 quadrangles.

87

5. Flipping Towards Hexahedral Meshes

Figure 42: The four most time-consuming quadrangulated spheres
to mesh using our method. Each required over an hour of compu-
tation time on 64 cores.

88

5.5. Small Non-Shellable Hexahedral Meshes

By using both algorithms with the same input, we’re able to com-
pare their outputs and identify non-shellable meshes: those that are
found by the algorithm in Chapter 4, but not by the one described
in this chapter.

This method allowed us to find a non-shellable hexahedral mesh
with the boundary of a cube, containing a total of 30 vertices and 21
hexahedra. The untangling techniques that we’ve used so far were
unable to produce a valid trilinear realization of this topological
mesh.

There were only 14 distinct non-shellable meshes of the cube
with at most 23 hexahedra. This justifies the focus on shellings
for hexahedral meshing: non-shellable meshes are rare, require an
irregular structure, and often do not appear to have a high quality
geometric realization.

89

Chapter 6

A Geometric Mesh of
Schneiders’ Pyramid

So far we have focused on topological meshes. However, most ap-
plications require meshes represented as trilinear or higher-order
surfaces with requirements on the quality of the elements depend-
ing on the problem domain. A more theoretical question concerns

Figure 43: Three cases for which no geometric hexahedral meshes
(with planar quadrangular faces) are known: a bicuboid with
warped equator, the octagonal spindle, and Schneiders’ pyramid.
The latter two cases are solved in this chapter.

91

6. A Geometric Mesh of Schneiders’ Pyramid

so-called geometric hexahedral meshes, where the hexahedra are
convex polyhedra in R3, bounded by six planar faces. Even for sim-
ple input polyhedra, no geometric mesh has been found and the
exact requirements the boundary must meet for the existence of a
geometric hexahedral mesh remain unknown.

Eppstein [1999a] reduced the problem of geometric hex-meshing
to one family of cases: that of bicuboids with a warped equator.
Even the 8-quadrangle octagonal spindle (also known as tetragonal
trapezohedron) and the closely related 16-quadrangle pyramid have
no known hexahedral mesh without warped faces (Figure 43).

However, using the techniques introduced in chapters 4 and 5,
we can improve the existing 88-element solution Yamakawa and Shi-
mada [2010] and compute a geometric hexahedral mesh with ratio-
nal coordinates. First we modify the topology of the mesh, ob-
taining a solution with only 44-element for the pyramid, containing
a 40-element mesh for the trapezohedron (Section 6.1). We then
adjust the coordinates of the vertices in the mesh to satisfy the con-
straint that every face be planar (Section 6.2). The resulting mesh
is the first geometric hexahedral mesh of the pyramid, proving that
such meshes exist for at least two of the three cases in Figure 43.

6.1 Simplifying a Mesh of Schneiders’
Pyramid

We begin by applying the mesh simplification algorithm introduced
in Section 4.2 to Yamakawa’s mesh of Schneiders’ pyramid to reduce
the number of elements in the mesh through a sequence of local op-
erations. The resulting hexahedral mesh is valid and contains 66
hexahedra and 63 interior vertices (Figure 44). Table 6.1 shows the
sizes of the different cavities simplified by the algorithm. It takes a
few minutes to reduce the number of hexahedra in the mesh from 88
down to 66. Figure 45 shows the changes to the connectivity of the
mesh performed in two different iterations of the algorithm. The
vertices had to be moved to obtain a valid mesh, but the combina-

92

6.1. Simplifying a Mesh of Schneiders’ Pyramid

Figure 44: A 66-element mesh of Schneiders’ pyramid (right) ob-
tained from improving the topology of the 88-element of mesh Ya-
makawa and Shimada (left).

Initial Mesh Initial Cavity Remeshed Cavity New Mesh
#hex #vert. #hex #vert. #bd. facets #hex #vert. #hex #vert

88 105 8 23 18 6 21 86 103
86 103 8 23 18 6 21 84 101
84 101 8 23 18 6 21 82 99
82 99 14 33 24 8 27 76 93
76 93 6 16 10 2 12 72 89
72 89 18 40 30 12 32 66 81

Table 6.1: Cavity remeshing operations performed by our hex-mesh
simplification algorithm on Yamakawa’s 88-element mesh of Schnei-
ders’ pyramid.

torial boundary remains the same. For example, for the second pair
of cavities in the figure, the same 30 facets can be seen before and
after the remeshing operation: there is a central facet, surrounded
by a ring of five quadrangles, followed by three rings of six quad-
rangles, followed by one more ring of five quadrangles surrounding
a single face.

The next step of our construction is to use the 72-element mesh
constructed in one of the intermediate steps detailed in Table 6.1 to

93

6. A Geometric Mesh of Schneiders’ Pyramid

Figure 45: (top) Removal of two hexahedra from Schneiders’ pyra-
mid; (bottom) removal of six hexahedra. The initial cavity (left) and
the remeshed cavity (right) have the same combinatorial boundary
(top: 18 facets; bottom: 30 facets). Colors highlight the correspon-
dence between faces.

94

6.1. Simplifying a Mesh of Schneiders’ Pyramid

Figure 46: The octagonal spindle (left) can be used to construct
Schneiders’ pyramid (right) by only adding one layer of quadrangles
(cyan curve).

create a 40-element mesh of the octagonal spindle. Indeed, Schnei-
ders’ pyramid and the octagonal spindle are related by their dual
graphs: replace each quadrangle by a vertex, and create an edge
between each pair of adjacent quadrangles. If the dual edges that
traverse opposite edges of a quadrangle in the primal are grouped
together, a simple arrangement of curve is obtained. The dual of
Schneiders’ pyramid is obtained by adding one curve to the dual of
the octagonal spindle (Figure 46).

This relationship determines a method to create hexahedral meshes
of the octagonal spindle from certain meshes of Schneiders’ pyramid.
The dual of a hexahedral mesh is a simple arrangement of surfaces
[Murdoch et al., 1997], where each surface is bounded by zero, one,
or multiple curves of the dual arrangement of the boundary quad
mesh (Figure 47). If the dual of a mesh of Schneiders’ pyramid
contains a surface which is bounded only by the curve present in
Schneiders’ pyramid but not in the octagonal spindle, that surface
can be removed by collapsing all the edges that it traverses [Bor-
den et al., 2002]. The resulting mesh is a hexahedral mesh of the
octagonal spindle.

In general, this operation may produce a degenerate mesh, with

95

6. A Geometric Mesh of Schneiders’ Pyramid

Figure 47: The mesh of Schneiders’ pyramid by Yamakawa and Shi-
mada (left), and our 72-element (center) and 66-element (right)
meshes constructed from it. The first two meshes have two dis-
tinct dual surfaces for the two dual curves of the boundary (bottom
row), but they were merged in the 66-element mesh.

hexahedra sharing multiple quadrangles or quadrangles sharing mul-
tiple edges. This is what prevented the construction of a mesh of the
octagonal spindle directly from the 88-element mesh of Yamakawa
and Shimada [2010]. Applying this procedure to our 72-element
mesh, however, we obtain a new mesh the octagonal spindle, with
40 hexahedra and 42 interior vertices (Figure 49). This is the small-
est known mesh of the octagonal spindle.

Finally, we add 4 hexahedra to our mesh of the spindle, reintro-
ducing the missing layer of hexahedra to obtain a 44-element mesh
of Schneiders’ pyramid. (Figure 48). This trilinear mesh serves as
our starting point for the construction of a geometric mesh.

96

6.2. The First Geometric Mesh of Schneiders’ Pyramid

Figure 48: Comparison of our 44-element mesh of Schneiders’ pyra-
mid (left) with the smallest known 36-element solution (right). Both
admit two planar symmetries.

6.2 The First Geometric Mesh of
Schneiders’ Pyramid

There are multiple meshes of the pyramid using trilinear hexahe-
dra. That is, find coordinates for every vertex such that, for each
hexahedron in the topological mesh, the convex hull of the 8 ver-
tices indeed has 6 quadrangular faces. In theory, it is possible to
determine if such a system of equation has a solution symbolically
by formulating it using the existential theory of real numbers Tarski
[1948]. In practice, however, this approach proves far too expensive.
Instead, we opt to search for an exact numerical solution by making
a few assumptions:

1. there is a geometric mesh close to one of our trilinear meshes,
i.e. vertices only need to be adjusted by a small amount;

2. this geometric mesh can be represented using rational coordi-
nates;

97

6. A Geometric Mesh of Schneiders’ Pyramid

Figure 49: A layer of hexahedra in a 72-element mesh of Schneiders’
pyramid (left) is removed (center). After merging the endpoints of
each removed edge, a mesh of the octagonal spindle is obtained
(right).

3. the geometric mesh preserves the same symmetries as our tri-
linear mesh. A symmetry of a combinatorial mesh M is a
permutation σ of its vertices such that h is a hexahedron of
M if and only if σ(h) is also a hexahedron of M (possibly up
to a reversal of orientation). A geometric or trilinear mesh
preserves a combinatorial symmetry if for every such symme-
try σ there is an affine function f : R3 → R3 such that h is a
hexahedron of the geometric or trilinear mesh if and only if the
vertices of σ(h) are the images of the corresponding vertices
of h under f . Our mesh of the pyramid has two reflections as
symmetries, (x, y, z) → (−x, y, z) and (x, y, z) → (x, y,−z).
Its linear symmetry group also includes their composition and
the identity.

In general, it is not the case that a solution meeting those re-
quirements exist, even if a geometric mesh does exist. For example,
the realization of a combinatorial mesh may require irrational num-
bers [Richter-Gebert and Ziegler, 1995] or not be able to preserve
all combinatorial symmetries. However, these three assumptions
greatly reduce the number of parameters needed for a solution, as
well as the computational cost to manipulate them.

98

6.2. The First Geometric Mesh of Schneiders’ Pyramid

6.2.1 Initial Numerical Solution

The trilinear embedding of the meshes available to us were con-
structed to maximize quality measures used to evaluate meshes in
finite element applications. The faces are non-planar because these
measures do not seek to minimize the extent to which faces are
warped.

Using SCIP [Bolusani et al., 2024], we compute a numerical mesh
ensuring the volume of the tetrahedron spanned by the vertices a,
b, c, d of each face is within a small tolerance ϵ of zero:

−ϵ ≤ 1

6
[(b− a)× (c− a)] · (d− a) ≤ ϵ

All boundary vertices have the coordinates fixed using an embed-
ding of the boundary polyhedron. This process informs the choice
for a combinatorial mesh to extend to a geometric mesh: whereas
this process finds hexahedral mesh with volumes for the faces with
ϵ ≤ 10−8 from our 44-element mesh, it is not able to find such
solutions for the 36-element mesh of the pyramid originally found
by Xiang and Liu [2018]. This suggests it may not be possible to
extend the 36-element mesh to a geometric mesh.

6.2.2 Constructing an Exact Geometric Mesh

From this approximate numerical solution, we construct a new mesh
where every face will be planar. We keep track of the set F of
vertices whose coordinates in the geometric mesh have been de-
termined. These exact coordinates are computed by applying a
sequence of the following three operations:

1. If there is a hexahedron h containing a vertex v such that the 6
vertices that share a quadrangle of h with v are in F , compute
v by intersecting the 3 planes that contain it and add it to F .

2. If there is a quadrangle q containing a vertex v such that the
other 3 vertices of q are in F , compute v by projecting it onto
the plane of the remaining vertices and add it to F .

99

6. A Geometric Mesh of Schneiders’ Pyramid

Figure 50: Construction of the geometric mesh. Vertices used from
the quantized numerical solution are shown in yellow. Green vertices
were projected onto a plane determined by other vertices (shown in
blue). One vertex shown in red was manually adjusted. All other
vertices are determined by symmetry or by intersecting three planes.

100

6.2. The First Geometric Mesh of Schneiders’ Pyramid

3. If none of those are possible, directly use a rational approxi-
mation of the coordinates of v in the numerical solution and
add it to F . For this operator, the vertices located on the
symmetry planes (i.e. the fixed points of the symmetries) are
prioritized, since they have fewer degrees of freedom. In par-
ticular the vertices at the intersection of all symmetry planes
are of the form (0, y, 0) and only have one degree of freedom.

After adding a vertex v to F , its symmetric counterparts un-
der each symmetry σ are also added to F , with their coordinates
computed from the image of v under the corresponding geometric
symmetry. Due to the high number of planarity constraints across
the mesh, the location of all vertices become completely constrained
after defining only a small number of them.

Each operation tends to increase the size of the fractions used to
represent rational vertices. To keep them from growing too large,
making each consecutive operation slower, the coordinates in the
numerical solution are initially quantized to the nearest multiple of
1

256 (except for the boundary vertices so that the boundary faces
remain planar).

We manually find a sequence of operations that yields a mesh
with all faces planar by construction, using 10 vertices from the
quantized mesh (operation 3), 3 projections of a vertex onto a quad-
rangle (operation 2) and computing the other vertices with the first
operation whenever possible (Figure 50). The resulting mesh may
still include flipped hexahedra depending on the initial vertices, de-
spite all faces being planar. Changing the location of one vertex by a
small amount in the initial numerical solution and performing these
operations again results in the first geometric mesh of Schneiders’
pyramid, as well as the octagonal spindle (Figure 51).

101

6. A Geometric Mesh of Schneiders’ Pyramid

Figure 51: A geometric hexahedral mesh of Schneiders’ pyramid.

102

Chapter 7

Conclusion

Topological meshing is an aspect of hexahedral mesh generation that
had been investigated from a theoretical perspective, in the form
of algorithm too impractical to implement in practice. This thesis
demonstrated much smaller bounds on the size of hexahedral meshes
than those found in the literature. Combinatorial search techniques
further enabled us to find topological meshes for all quadrangula-
tions of the sphere with up to 20 faces.

Importantly, these algorithms also demonstrate that there are
no small hexahedral meshes for many simple boundary configura-
tions, including Schneiders’ pyramid. This has implication for many
hexahedral meshing techniques. Consider any method that starts
from the boundary and fills the domain using an advancing front,
or any meshing algorithm that ends up enclosing a cavity with hex-
ahedra at some point during the meshing process. These techniques
are susceptible to encounter situations where the cavity they cre-
ate requires a non-trivial combinatorial structure. Even if a valid
topological mesh is found, computing valid trilinear mesh may be
impractical. To robustly handle difficult cases, advancing fronts
methods must either include mechanisms to avoid difficult-to-mesh
boundaries, or to find a correct topological mesh even when such
configurations arise.

Throughout this work, we’ve primarily discussed quadrangular

103

7. Conclusion

Figure 52: A block-structured mesh contains coarse-grained blocks
(shown using colors), each subdivided into a regular grid of hexa-
hedra.

meshes with a small number of faces, orders of magnitudes fewer
than the meshes used in industrial applications. Nonetheless, we
note two ways such combinatorial techniques may find concrete ap-
plications:

1. Block-structured meshes may contain a large number of ele-
ments, but are subdivided into a relatively small number of
blocks, each containing a regular grid of hexahedra or quad-
rangles (Figure 52). Combinatorial techniques can be used to
manipulate the mesh at the level of blocks.

2. Multiple meshing techniques rely on manually designed hex-

104

ahedral templates, for instance octree-based techniques use
them extensively to represent size transitions. Our techniques
automate the process of creating such templates, enabling
techniques that rely on a wider range of templates.

Indeed, such combinatorial-first techniques have already found
practical applications to generate boundary layers of hexahedral
meshes [Reberol et al., 2023]. In order to successfully implement
these techniques for a broader range of meshing tasks, more robust
smoothing, untangling and mesh repair algorithms will be required.
To deal with more complex cases, geometric information may also
be used to guide topological and combinatorial algorithms towards
suitable mesh structures.

Another important area of future research is geometric hex-
meshing. Even if trilinear or higher order elements remain the fo-
cus for mesh generation in practice, the simpler geometric setting
of convex polyhedral meshes may offer new insights into the link
between the combinatorial structure of a mesh and its geometric
quality. The tetragonal trapezohedron is one of several test cases
for which no geometric mesh could be found for a long time. Yet,
the methods shown in this thesis show that it in fact does admit
one. Finding a geometric mesh for all bicuboids would prove that
the criteria for geometric and topological meshing are the same. The
enumeration of topological meshes may be part of a proof of this
statement, or a useful tool to narrow down a geometric obstruction
to the construction of hexahedral meshes.

Hexahedral meshing is an appealing goal with many industrial
applications. This has motivated the continuous development of
a wide range of mesh generation techniques, in spite of the many
challenges that have stood for decades. The integration of methods
from other fields, including combinatorial methods, is a promising
path towards finally overcoming these obstacles.

105

Bibliography

Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta.
2015. Classic Nintendo games are (computationally) hard. Theor.
Comput. Sci. 586 (2015), 135–160. https://doi.org/10.1016/
J.TCS.2015.02.037

Altair. 2024a. HyperMesh Documentation: Map Mesh-
ing. https://help.altair.com/hwdesktop/hwx/topics/pre_
processing/meshing/meshing_solid_map_unity_c.htm

Altair. 2024b. HyperMesh Documentation: Review Elements by
Element Criteria. https://help.altair.com/hwdesktop/hwx/
topics/pre_processing/meshing/2d_element_quality_by_
criteria_review_t.htm

ANSYS. 2021. Introduction to ANSYS Meshing: Mesh Quality &
Advanced Topics. Lecture. https://featips.com/wp-content/
uploads/2021/05/Mesh-Intro_16.0_L07_Mesh_Quality_and_
Advanced_Topics.pdf

Tathagata Basak. 2010. Combinatorial cell complexes and Poincaré
duality. Geom. Dedicata 147 (2010), 357–387. https://doi.
org/10.1007/s10711-010-9458-y

Klaus-Jürgen Bathe. 2006. Finite element procedures. Klaus-Jurgen
Bathe.

Tristan Carrier Baudouin, Jean-Francois Remacle, Emilie Marchan-
dise, Francois Henrotte, and Christophe Geuzaine. 2014. A

107

https://doi.org/10.1016/J.TCS.2015.02.037
https://doi.org/10.1016/J.TCS.2015.02.037
https://help.altair.com/hwdesktop/hwx/topics/pre_processing/meshing/meshing_solid_map_unity_c.htm
https://help.altair.com/hwdesktop/hwx/topics/pre_processing/meshing/meshing_solid_map_unity_c.htm
https://help.altair.com/hwdesktop/hwx/topics/pre_processing/meshing/2d_element_quality_by_criteria_review_t.htm
https://help.altair.com/hwdesktop/hwx/topics/pre_processing/meshing/2d_element_quality_by_criteria_review_t.htm
https://help.altair.com/hwdesktop/hwx/topics/pre_processing/meshing/2d_element_quality_by_criteria_review_t.htm
https://featips.com/wp-content/uploads/2021/05/Mesh-Intro_16.0_L07_Mesh_Quality_and_Advanced_Topics.pdf
https://featips.com/wp-content/uploads/2021/05/Mesh-Intro_16.0_L07_Mesh_Quality_and_Advanced_Topics.pdf
https://featips.com/wp-content/uploads/2021/05/Mesh-Intro_16.0_L07_Mesh_Quality_and_Advanced_Topics.pdf
https://doi.org/10.1007/s10711-010-9458-y
https://doi.org/10.1007/s10711-010-9458-y

Bibliography

frontal approach to hex-dominant mesh generation. Advanced
Modeling and Simulation in Engineering Sciences 1, 1 (2014),
1. http://amses-journal.springeropen.com/articles/10.
1186/2213-7467-1-8

Bruce G. Baumgart. 1972. Winged edge polyhedron representation.
https://doi.org/10.21236/ad0755141

Piotr Beben. 2020. Topology of frame field design for hex meshing.
arXiv preprint arXiv:2011.05276 (2020).

Marshall W. Bern, David Eppstein, and Jeff Erickson. 2002. Flip-
ping Cubical Meshes. Eng. Comput. (Lond.) 18, 3 (2002), 173–
187. https://doi.org/10.1007/s003660200016

Marshall W. Bern and Paul E. Plassmann. 2000. Mesh Generation.
In Handbook of Computational Geometry, Jörg-Rüdiger Sack and
Jorge Urrutia (Eds.). North Holland / Elsevier, 291–332. https:
//doi.org/10.1016/B978-044482537-7/50007-3

Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, An-
tonia Chmiela, João Dionísio, Tim Donkiewicz, Jasper van
Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros
Gleixner, Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexan-
der Hoen, Christopher Hojny, Rolf van der Hulst, Dominik
Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian
Manns, Gioni Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska
Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner, Ste-
fan Vigerske, Dieter Weninger, and Lixing Xu. 2024. The
SCIP Optimization Suite 9.0. Technical Report. Optimiza-
tion Online. https://optimization-online.org/2024/02/
the-scip-optimization-suite-9-0/

Michael J. Borden, Steven E. Benzley, and Jason F. Shepherd. 2002.
Hexahedral Sheet Extraction.. In IMR. 147–152.

Domagoj Bosnjak, Antonio Pepe, Richard Schussnig, Dieter
Schmalstieg, and Thomas-Peter Fries. 2024. Higher-order block-

108

http://amses-journal.springeropen.com/articles/10.1186/2213-7467-1-8
http://amses-journal.springeropen.com/articles/10.1186/2213-7467-1-8
https://doi.org/10.21236/ad0755141
https://doi.org/10.1007/s003660200016
https://doi.org/10.1016/B978-044482537-7/50007-3
https://doi.org/10.1016/B978-044482537-7/50007-3
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/

Bibliography

structured hex meshing of tubular structures. Eng. Com-
put. 40, 2 (2024), 931–951. https://doi.org/10.1007/
S00366-023-01834-7

Arnaud Botella, Bruno Lévy, and Guillaume Caumon. 2016. In-
direct unstructured hex-dominant mesh generation using tetra-
hedra recombination. Computational Geosciences 20, 3 (2016),
437–451.

Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez, Bruno
Lévy, Stephan Bischoff, and Christian Rössl. 2007. Geometric
modeling based on polygonal meshes. In International Confer-
ence on Computer Graphics and Interactive Techniques, SIG-
GRAPH 2007, San Diego, California, USA, August 5-9, 2007,
Courses, Sara McMains and Peter-Pike Sloan (Eds.). ACM, 1.
https://doi.org/10.1145/1281500.1281640

Xavier Bourdin, Xavier Trosseille, Philippe Petit, and Philippe Beil-
las. 2007. Comparison of tetrahedral and hexahedral meshes for
organ finite element modeling: an application to kidney impact.
In 20th International technical conference on the enhanced safety
of vehicle, Lyon.

Gunnar Brinkmann, Sam Greenberg, Catherine S. Greenhill, Bren-
dan D. McKay, Robin Thomas, and Paul Wollan. 2005. Gener-
ation of simple quadrangulations of the sphere. Discrete Math-
ematics 305, 1-3 (2005), 33–54. https://doi.org/10.1016/j.
disc.2005.10.005

Gunnar Brinkmann and Brendan D. McKay. 2007. Fast generation
of planar graphs. MATCH Commun. Math. Comput. Chem 58, 2
(2007), 323–357.

Benjamin A. Burton. 2011. The pachner graph and the simplifica-
tion of 3-sphere triangulations. In Proceedings of the 27th Sympo-
sium on Computational Geometry. 153–162. https://doi.org/
10.1145/1998196.1998220

109

https://doi.org/10.1007/S00366-023-01834-7
https://doi.org/10.1007/S00366-023-01834-7
https://doi.org/10.1145/1281500.1281640
https://doi.org/10.1016/j.disc.2005.10.005
https://doi.org/10.1016/j.disc.2005.10.005
https://doi.org/10.1145/1998196.1998220
https://doi.org/10.1145/1998196.1998220

Bibliography

Benjamin A. Burton, Ryan Budney, William Pettersson, et al. 1999–
2023. Regina: Software for low-dimensional topology. http:
//regina-normal.github.io/

James C Caendish, David A Field, and William H Frey. 1985. An ap-
porach to automatic three-dimensional finite element mesh gener-
ation. International journal for numerical methods in engineering
21, 2 (1985), 329–347.

Carlos D. Carbonera and Jason F. Shepherd. 2010. A constructive
approach to constrained hexahedral mesh generation. Eng. Com-
put. (Lond.) 26, 4 (2010), 341–350. https://doi.org/10.1007/
s00366-009-0168-8

Edwin E. Catmull. 1972. A system for computer generated
movies. In Proceedings of the ACM annual conference, ACM
1972, Boston, MA, USA, August 1972, Volume 1, John J. Dono-
van and Rosemary Shields (Eds.). ACM, 422–431. https:
//doi.org/10.1145/800193.569952

John R Chawner, John Dannenhoffer, and Nigel J Taylor. 2016.
Geometry, mesh generation, and the CFD 2030 vision. In 46th
AIAA Fluid Dynamics Conference. 3485.

Charles J. Colbourn and Kellogg S. Booth. 1981. Linear time
automorphism algorithms for trees, interval graphs, and planar
graphs. SIAM J. Comput. 10, 1 (1981), 203–225. https:
//doi.org/10.1137/0210015

Cubit. 2024. CUBIT 16.16 User Documentation. https://cubit.
sandia.gov/files/cubit/16.16/help_manual/Printed_
Documentation/Cubit_16.16_User_Documentation.pdf

Herbert Edelsbrunner. 2001. Geometry and Topology for Mesh Gen-
eration. Cambridge monographs on applied and computational
mathematics, Vol. 7. Cambridge University Press.

110

http://regina-normal.github.io/
http://regina-normal.github.io/
https://doi.org/10.1007/s00366-009-0168-8
https://doi.org/10.1007/s00366-009-0168-8
https://doi.org/10.1145/800193.569952
https://doi.org/10.1145/800193.569952
https://doi.org/10.1137/0210015
https://doi.org/10.1137/0210015
https://cubit.sandia.gov/files/cubit/16.16/help_manual/Printed_Documentation/Cubit_16.16_User_Documentation.pdf
https://cubit.sandia.gov/files/cubit/16.16/help_manual/Printed_Documentation/Cubit_16.16_User_Documentation.pdf
https://cubit.sandia.gov/files/cubit/16.16/help_manual/Printed_Documentation/Cubit_16.16_User_Documentation.pdf

Bibliography

Jack Edmonds. 1965. Paths, trees, and flowers. Canadian Journal
of mathematics 17 (1965), 449–467.

David Eppstein. 1999a. Linear complexity hexahedral mesh gener-
ation. Computational Geometry 12, 1-2 (1999), 3–16. https:
//doi.org/10.1016/S0925-7721(98)00032-7

David Eppstein. 1999b. Subgraph isomorphism in planar
graphs and related problems. J. Graph Algorithms Appl. 3,
3 (1999). http://www.cs.brown.edu/publications/jgaa/
accepted/99/Eppstein99.3.3.pdf

Jeff Erickson. 2014. Efficiently hex-meshing things with topol-
ogy. Discrete & Computational Geometry 52, 3 (2014), 427–449.
https://doi.org/10.1007/s00454-014-9624-3

Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann.
2001. Symmetry Breaking. In Principles and Practice of Con-
straint Programming. 93–107. https://doi.org/10.1007/
3-540-45578-7_7

Louis Funar. 1999. Cubulations mod bubble moves. Contemp. Math.
233 (1999), 29–44.

Xifeng Gao, Jin Huang, Kaoji Xu, Zherong Pan, Zhigang Deng,
and Guoning Chen. 2017a. Evaluating Hex-mesh Quality Metrics
via Correlation Analysis. Comput. Graph. Forum 36, 5 (2017),
105–116. https://doi.org/10.1111/cgf.13249

Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo.
2017b. Robust hex-dominant mesh generation using field-guided
polyhedral agglomeration. ACM Trans. Graph. 36, 4 (2017),
114:1–114:13. https://doi.org/10.1145/3072959.3073676

Xifeng Gao, Hanxiao Shen, and Daniele Panozzo. 2019. Feature
Preserving Octree-Based Hexahedral Meshing. Comput. Graph.
Forum 38, 5 (2019), 135–149. https://doi.org/10.1111/cgf.
13795

111

https://doi.org/10.1016/S0925-7721(98)00032-7
https://doi.org/10.1016/S0925-7721(98)00032-7
http://www.cs.brown.edu/publications/jgaa/accepted/99/Eppstein99.3.3.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/99/Eppstein99.3.3.pdf
https://doi.org/10.1007/s00454-014-9624-3
https://doi.org/10.1007/3-540-45578-7_7
https://doi.org/10.1007/3-540-45578-7_7
https://doi.org/10.1111/cgf.13249
https://doi.org/10.1145/3072959.3073676
https://doi.org/10.1111/cgf.13795
https://doi.org/10.1111/cgf.13795

Bibliography

Ian P. Gent, Karen E. Petrie, and Jean-François Puget. 2006.
Symmetry in Constraint Programming. In Handbook of Con-
straint Programming. 329–376. https://doi.org/10.1016/
S1574-6526(06)80014-3

Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A
3-D finite element mesh generator with built-in pre- and post-
processing facilities. Internat. J. Numer. Methods Engrg. 79, 11
(Sep 2009), 1309–1331. https://doi.org/10.1002/nme.2579

Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and
Uli Wagner. 2018. Shellability is NP-Complete. In Proceedings
of the 34th Symposium on Computational Geometry. 41:1–41:15.
https://doi.org/10.4230/LIPIcs.SoCG.2018.41

Craig Gotsman, Xianfeng Gu, and Alla Sheffer. 2003. Fundamentals
of spherical parameterization for 3D meshes. ACM Trans. Graph.
22, 3 (2003), 358–363. https://doi.org/10.1145/882262.
882276

James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-Hex
Mesh Generation via Volumetric PolyCube Deformation. Com-
puter Graphics Forum 30, 5 (Aug. 2011), 1407–1416. https:
//doi.org/10.1111/j.1467-8659.2011.02015.x

Allen Hatcher. 2002. Algebraic topology. Cambridge University
Press, Cambridge. xii+544 pages.

K Ho-Le. 1988. Finite element mesh generation methods: a review
and classification. Computer-aided design 20, 1 (1988), 27–38.

Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. 2005. Isoge-
ometric analysis: CAD, finite elements, NURBS, exact geometry
and mesh refinement. Computer methods in applied mechanics
and engineering 194, 39-41 (2005), 4135–4195.

Amaury Johnen, Jean-Christophe Weill, and Jean-François
Remacle. 2017. Robust and efficient validation of the linear

112

https://doi.org/10.1016/S1574-6526(06)80014-3
https://doi.org/10.1016/S1574-6526(06)80014-3
https://doi.org/10.1002/nme.2579
https://doi.org/10.4230/LIPIcs.SoCG.2018.41
https://doi.org/10.1145/882262.882276
https://doi.org/10.1145/882262.882276
https://doi.org/10.1111/j.1467-8659.2011.02015.x
https://doi.org/10.1111/j.1467-8659.2011.02015.x

Bibliography

hexahedral element. Procedia Engineering 203 (2017), 271–283.
https://doi.org/10.1016/j.proeng.2017.09.809

Charles Jordan, Michael Joswig, and Lars Kastner. 2018. Parallel
Enumeration of Triangulations. Electr. J. Comb. 25, 3 (2018),
P3.6. http://www.combinatorics.org/ojs/index.php/eljc/
article/view/v25i3p6

Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek.
2003. Computing homology. Vol. 5. 233–256. http://
projecteuclid.org/euclid.hha/1088453326 Algebraic topo-
logical methods in computer science (Stanford, CA, 2001).

Richard M. Karp. 1972. Reducibility Among Combinatorial Prob-
lems. In Proceedings of a symposium on the Complexity of Com-
puter Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, USA
(The IBM Research Symposia Series), Raymond E. Miller and
James W. Thatcher (Eds.). Plenum Press, New York, 85–103.
https://doi.org/10.1007/978-1-4684-2001-2_9

Patrick M Knupp. 1990. On the invertibility of the isoparametric
map. Computer Methods in Applied Mechanics and Engineering
78, 3 (1990), 313–329.

Patrick M. Knupp. 2001. Hexahedral and Tetrahedral Mesh Untan-
gling. Engineering with Computers 17, 3 (Oct. 2001), 261–268.
https://doi.org/10.1007/s003660170006

Michael Kremer, David Bommes, Isaak Lim, and Leif Kobbelt. 2014.
Advanced automatic hexahedral mesh generation from surface
quad meshes. In Proceedings of the 22nd International Meshing
Roundtable. Springer, 147–164.

Bruno Lévy. 2001. Constrained texture mapping for polygonal
meshes. In Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH 2001,

113

https://doi.org/10.1016/j.proeng.2017.09.809
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i3p6
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i3p6
http://projecteuclid.org/euclid.hha/1088453326
http://projecteuclid.org/euclid.hha/1088453326
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s003660170006

Bibliography

Los Angeles, California, USA, August 12-17, 2001, Lynn Pocock
(Ed.). ACM, 417–424. https://doi.org/10.1145/383259.
383308

Bruno Lévy and Yang Liu. 2010. Lp Centroidal Voronoi Tessellation
and its applications. ACM Trans. Graph. 29, 4 (2010), 119:1–
119:11. https://doi.org/10.1145/1778765.1778856

Yufei Li, Yang Liu, Weiwei Xu, Wenping Wang, and Baining Guo.
2012. All-hex meshing using singularity-restricted field. ACM
Trans. Graph. 31, 6 (2012), 177:1–177:11. https://doi.org/
10.1145/2366145.2366196

Juncong Lin, Xiaogang Jin, Zhengwen Fan, and Charlie C. L.
Wang. 2008. Automatic PolyCube-Maps. In Advances in Geo-
metric Modeling and Processing, 5th International Conference,
GMP 2008, Hangzhou, China, April 23-25, 2008. Proceedings.
3–16. https://doi.org/10.1007/978-3-540-79246-8_1

Heng Liu and David Bommes. 2023. Locally Meshable Frame Fields.
ACM Trans. Graph. 42, 4 (2023), 112:1–112:20. https://doi.
org/10.1145/3592457

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David
Bommes. 2018. Singularity-constrained octahedral fields for hex-
ahedral meshing. ACM Trans. Graph. 37, 4 (2018), 93:1–93:17.
https://doi.org/10.1145/3197517.3201344

Marco Livesu, Alla Sheffer, Nicholas Vining, and Marco Tarini.
2015. Practical Hex-mesh Optimization via Edge-cone Recti-
fication. ACM Trans. Graph. 34, 4 (July 2015), 141:1–141:11.
https://doi.org/10.1145/2766905

Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and
Riccardo Scateni. 2013. PolyCut: monotone graph-cuts for
PolyCube base-complex construction. ACM Trans. Graph. 32,
6 (2013), 171:1–171:12. https://doi.org/10.1145/2508363.
2508388

114

https://doi.org/10.1145/383259.383308
https://doi.org/10.1145/383259.383308
https://doi.org/10.1145/1778765.1778856
https://doi.org/10.1145/2366145.2366196
https://doi.org/10.1145/2366145.2366196
https://doi.org/10.1007/978-3-540-79246-8_1
https://doi.org/10.1145/3592457
https://doi.org/10.1145/3592457
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/2766905
https://doi.org/10.1145/2508363.2508388
https://doi.org/10.1145/2508363.2508388

Bibliography

Frank H. Lutz. 2003. A Vertex-Minimal Non-Shellable Sim-
plicial 3-Ball with 9 Vertices and 18 Facets EG-Models
Home. http://www.eg-models.de/models/Simplicial_
Manifolds/2003.05.004/_preview.html

Manish Mandad, Ruizhi Chen, David Bommes, and Marcel
Campen. 2022. Intrinsic mixed-integer polycubes for hexahe-
dral meshing. Comput. Aided Geom. Des. 94 (2022), 102078.
https://doi.org/10.1016/J.CAGD.2022.102078

Emilie Marchandise, Gaëtan Compère, Marie Willemet, Gaëtan
Bricteux, Christophe Geuzaine, and J-F Remacle. 2010. Quality
meshing based on STL triangulations for biomedical simulations.
International Journal for Numerical Methods in Biomedical En-
gineering 26, 7 (2010), 876–889.

Loïc Maréchal. 2009. Advances in Octree-Based All-Hexahedral
Mesh Generation: Handling Sharp Features. In Proceedings of
the 18th International Meshing Roundtable, IMR 2009, Octo-
ber 25-28, 2009, Salt Lake City, UT, USA. 65–84. https:
//doi.org/10.1007/978-3-642-04319-2_5

Célestin Marot, Kilian Verhetsel, and Jean-François Remacle. 2020.
Reviving the search for optimal tetrahedralizations. Proceedings
of the 28th International Meshing Roundtable. Zenodo, Buffalo,
New York, USA (2020).

Zoë Marschner, David R. Palmer, Paul Zhang, and Justin Solomon.
2020. Hexahedral Mesh Repair via Sum-of-Squares Relaxation.
Comput. Graph. Forum 39, 5 (2020), 133–147. https://doi.
org/10.1111/CGF.14074

Sia Meshkat and Dafna Talmor. 2000. Generating a
mixed mesh of hexahedra, pentahedra and tetrahe-
dra from an underlying tetrahedral mesh. Internat. J.
Numer. Methods Engrg. 49, 1-2 (Sept. 2000), 17–30.
https://doi.org/10.1002/1097-0207(20000910/20)49:
1/2<17::AID-NME920>3.0.CO;2-U

115

http://www.eg-models.de/models/Simplicial_Manifolds/2003.05.004/_preview.html
http://www.eg-models.de/models/Simplicial_Manifolds/2003.05.004/_preview.html
https://doi.org/10.1016/J.CAGD.2022.102078
https://doi.org/10.1007/978-3-642-04319-2_5
https://doi.org/10.1007/978-3-642-04319-2_5
https://doi.org/10.1111/CGF.14074
https://doi.org/10.1111/CGF.14074
https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<17::AID-NME920>3.0.CO;2-U
https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<17::AID-NME920>3.0.CO;2-U

Bibliography

Scott A Mitchell. 1996. A characterization of the quadrilateral
meshes of a surface which admit a compatible hexahedral mesh
of the enclosed volume. In Annual Symposium on Theoretical As-
pects of Computer Science. Springer, 465–476.

Scott A. Mitchell and Timothy J. Tautges. 1994. Pillowing doublets:
refining a mesh to ensure that faces share at most one edge. In
Proceedings of the 4th International Meshing Roundtable. 231–
240.

Yuichiro Motooka, So Noguchi, and Hajime Igarashi. 2011. Eval-
uation of hexahedral mesh quality for finite element method in
electromagnetics. In Materials Science Forum, Vol. 670. Trans
Tech Publications, 318–324.

Matthias Müller-Hannemann. 1999. Hexahedral mesh generation
by successive dual cycle elimination. Eng. Comput. (Lond.) 15, 3
(1999), 269–279.

James R. Munkres. 1984. Elements of algebraic topology. Addison-
Wesley Publishing Company, Menlo Park, CA. ix+454 pages.

Peter Murdoch, Steven Benzley, Ted Blacker, and Scott A. Mitchell.
1997. The spatial twist continuum: a connectivity based method
for representing all-hexahedral finite element meshes. Finite
Elem. Anal. Des. 28, 2 (1997), 137–149. https://doi.org/
10.1016/S0168-874X(97)81956-7

Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011.
CubeCover - Parameterization of 3D Volumes. Comput. Graph.
Forum 30, 5 (2011), 1397–1406. https://doi.org/10.1111/j.
1467-8659.2011.02014.x

Steven J. Owen. 2001. Hex-dominant mesh generation using 3D
constrained triangulation. Computer-Aided Design 33, 3 (2001),
211–220. https://doi.org/10.1016/S0010-4485(00)00121-4

116

https://doi.org/10.1016/S0168-874X(97)81956-7
https://doi.org/10.1016/S0168-874X(97)81956-7
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1016/S0010-4485(00)00121-4

Bibliography

Jeanne Pellerin, Amaury Johnen, Kilian Verhetsel, and Jean-
François Remacle. 2018a. Identifying combinations of tetrahedra
into hexahedra: A vertex based strategy. Computer-Aided Design
105 (2018). https://doi.org/10.1016/j.cad.2018.05.004

Jeanne Pellerin, Kilian Verhetsel, and Jean-François Remacle.
2018b. There are 174 subdivisions of the hexahedron into tetra-
hedra. ACM Trans. Graph. 37, 6 (2018), 266:1–266:9. https:
//doi.org/10.1145/3272127.3275037

Nico Pietroni, Marcel Campen, Alla Sheffer, Gianmarco Cherchi,
David Bommes, Xifeng Gao, Riccardo Scateni, Franck Ledoux,
Jean-François Remacle, and Marco Livesu. 2023. Hex-Mesh Gen-
eration and Processing: A Survey. ACM Trans. Graph. 42, 2
(2023), 16:1–16:44. https://doi.org/10.1145/3554920

Pixar. 2023. OpenSubDiv 3.6.0 Documentation: Modeling
Tips. https://graphics.pixar.com/opensubdiv/docs/mod_
notes.html

François Protais, Maxence Reberol, Nicolas Ray, Etienne Corman,
Franck Ledoux, and Dmitry Sokolov. 2022. Robust Quantiza-
tion for Polycube Maps. Comput. Aided Des. 150 (2022), 103321.
https://doi.org/10.1016/J.CAD.2022.103321

Nicolas Ray, Dmitry Sokolov, Maxence Reberol, Franck Ledoux,
and Bruno Lévy. 2018. Hex-dominant meshing: Mind the gap!
Computer-Aided Design 102 (2018), 94–103. https://doi.org/
10.1016/j.cad.2018.04.012

Maxence Reberol, Kilian Verhetsel, François Henrotte, David
Bommes, and Jean-François Remacle. 2023. Robust Topological
Construction of All-hexahedral Boundary Layer Meshes. ACM
Trans. Math. Softw. 49, 1 (2023), 2:1–2:32. https://doi.org/
10.1145/3577196

Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. 2013.
Embarrassingly parallel search. In International Conference on

117

https://doi.org/10.1016/j.cad.2018.05.004
https://doi.org/10.1145/3272127.3275037
https://doi.org/10.1145/3272127.3275037
https://doi.org/10.1145/3554920
https://graphics.pixar.com/opensubdiv/docs/mod_notes.html
https://graphics.pixar.com/opensubdiv/docs/mod_notes.html
https://doi.org/10.1016/J.CAD.2022.103321
https://doi.org/10.1016/j.cad.2018.04.012
https://doi.org/10.1016/j.cad.2018.04.012
https://doi.org/10.1145/3577196
https://doi.org/10.1145/3577196

Bibliography

Principles and Practice of Constraint Programming. Springer,
596–610.

Jean-Francois Remacle, Rajesh Gandham, and Tim Warburton.
2016. GPU accelerated spectral finite elements on all-hex meshes.
J. Comput. Physics 324 (Nov. 2016), 246–257.

J-F Remacle, Jonathan Lambrechts, Bruno Seny, Emilie Marchan-
dise, Amaury Johnen, and C Geuzainet. 2012. Blossom-Quad: A
non-uniform quadrilateral mesh generator using a minimum-cost
perfect-matching algorithm. International journal for numerical
methods in engineering 89, 9 (2012), 1102–1119.

Jürgen Richter-Gebert and Günter M. Ziegler. 1995. Realiza-
tion spaces of 4-polytopes are universal. Bull. Amer. Math.
Soc. (N.S.) 32, 4 (1995), 403–412. https://doi.org/10.1090/
S0273-0979-1995-00604-X

Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook
of constraint programming. Elsevier.

Colin P Rourke and Brian Joseph Sanderson. 2012. Introduction to
piecewise-linear topology. Springer Science & Business Media.

Igor Sazonov and Perumal Nithiarasu. 2011. Semi-automatic sur-
face and volume mesh generation for subject-specific biomedi-
cal geometries. International Journal for Numerical Methods in
Biomedical Engineering 28, 1 (2011), 133–157.

Saul Schleimer. 2011. Sphere recognition lies in NP. In Low-
dimensional and symplectic topology. Proc. Sympos. Pure Math.,
Vol. 82. Amer. Math. Soc., Providence, RI, 183–213. https:
//doi.org/10.1090/pspum/082/2768660

Robert Schneiders. 1995. Open problem. https://www.
robertschneiders.de/meshgeneration/open.html

118

https://doi.org/10.1090/S0273-0979-1995-00604-X
https://doi.org/10.1090/S0273-0979-1995-00604-X
https://doi.org/10.1090/pspum/082/2768660
https://doi.org/10.1090/pspum/082/2768660
https://www.robertschneiders.de/meshgeneration/open.html
https://www.robertschneiders.de/meshgeneration/open.html

Bibliography

Robert Schneiders. 1996. A grid-based algorithm for the generation
of hexahedral element meshes. Engineering with computers 12,
3-4 (1996), 168–177.

Robert Schneiders. 2000. Octree-Based Hexahedral Mesh Gener-
ation. Int. J. Comput. Geometry Appl. 10, 4 (2000), 383–398.
https://doi.org/10.1142/S021819590000022X

Alexander Schwartz and Günter M. Ziegler. 2004. Construction
techniques for cubical complexes, odd cubical 4-polytopes, and
prescribed dual manifolds. Experimental Mathematics 13, 4
(2004), 385–413.

Alla Sheffer, Emil Praun, Kenneth Rose, et al. 2007. Mesh pa-
rameterization methods and their applications. Foundations and
Trends® in Computer Graphics and Vision 2, 2 (2007), 105–171.

Jason F. Shepherd and Chris R. Johnson. 2009. Hexahedral
mesh generation for biomedical models in SCIRun. Eng.
Comput. 25, 1 (2009), 97–114. https://doi.org/10.1007/
S00366-008-0108-Z

Jonathan Richard Shewchuk. 1998. Tetrahedral Mesh Generation
by Delaunay Refinement. In Proceedings of the Fourteenth An-
nual Symposium on Computational Geometry, Minneapolis, Min-
nesota, USA, June 7-10, 1998, Ravi Janardan (Ed.). ACM, 86–
95. https://doi.org/10.1145/276884.276894

Kenji Shimada. 2011. Current Issues and Trends in Meshing and
Geometric Processing for Computational Engineering Analyses.
J. Comput. Inf. Sci. Eng. 11, 2 (2011). https://doi.org/10.
1115/1.3593414

Kenji Shimada. 2018. Mesh Generation — Fundamental Issues
and Emerging Applications. https://cmu.app.box.com/s/
fqx4tbetklypt89e6kb4zkujxugn5coh

119

https://doi.org/10.1142/S021819590000022X
https://doi.org/10.1007/S00366-008-0108-Z
https://doi.org/10.1007/S00366-008-0108-Z
https://doi.org/10.1145/276884.276894
https://doi.org/10.1115/1.3593414
https://doi.org/10.1115/1.3593414
https://cmu.app.box.com/s/fqx4tbetklypt89e6kb4zkujxugn5coh
https://cmu.app.box.com/s/fqx4tbetklypt89e6kb4zkujxugn5coh

Bibliography

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral
Mesh Generator. ACM Trans. Math. Softw. 41, 2 (feb 2015),
11:1–11:36. https://doi.org/10.1145/2629697

T. K. H. Tam and Cecil G. Armstrong. 1991. 2D finite element mesh
generation by medial axis subdivision. Advances in engineering
software and workstations 13, 5-6 (1991), 313–324.

Alfred Tarski. 1948. A Decision Method for Elementary Algebra
and Geometry. The Rand Corporation, Santa Monica, CA. iii+60
pages.

Timothy J. Tautges, Ted Blacker, and Scott A. Mitchell. 1996.
The whisker weaving algorithm: a connectivity-based method
for constructing all-hexahedral finite element meshes. In-
ternat. J. Numer. Methods Engrg. 39, 19 (1996), 3327–
3349. https://doi.org/10.1002/%28SICI%291097-0207%
2819961015%2939%3A19<3327%3A%3AAID-NME2>3.0.CO%3B2-H

William P. Thurston. 1993. Hexahedral decomposition of polyhe-
dra. Posting to sci.math. http://www.ics.uci.edu/~eppstein/
gina/Thurston-hexahedra.html

Hua Tong, Eni Halilaj, and Yongjie Jessica Zhang. 2024. Hybri-
dOctree_Hex: Hybrid octree-based adaptive all-hexahedral mesh
generation with Jacobian control. J. Comput. Sci. 78 (2024),
102278. https://doi.org/10.1016/J.JOCS.2024.102278

Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle,
and Jonathan Lambrechts. 2013. Robust untangling of curvi-
linear meshes. J. Comput. Physics 254 (2013), 8–26. https:
//doi.org/10.1016/j.jcp.2013.07.022

M Jon Turner, Ray W Clough, Harold C Martin, and LJ Topp. 1956.
Stiffness and deflection analysis of complex structures. journal of
the Aeronautical Sciences 23, 9 (1956), 805–823.

120

https://doi.org/10.1145/2629697
https://doi.org/10.1002/%28SICI%291097-0207%2819961015%2939%3A19<3327%3A%3AAID-NME2>3.0.CO%3B2-H
https://doi.org/10.1002/%28SICI%291097-0207%2819961015%2939%3A19<3327%3A%3AAID-NME2>3.0.CO%3B2-H
http://www.ics.uci.edu/~eppstein/gina/Thurston-hexahedra.html
http://www.ics.uci.edu/~eppstein/gina/Thurston-hexahedra.html
https://doi.org/10.1016/J.JOCS.2024.102278
https://doi.org/10.1016/j.jcp.2013.07.022
https://doi.org/10.1016/j.jcp.2013.07.022

Bibliography

Olga V. Ushakova. 2011. Nondegeneracy tests for hexahedral cells.
Computer Methods in Applied Mechanics and Engineering 200,
17–20 (apr 2011), 1649–1658. https://doi.org/10.1016/j.
cma.2011.01.014

Kilian Verhetsel, Jeanne Pellerin, and Jean-François Remacle.
2019a. A 44-element mesh of Schneiders’ pyramid: Bounding
the difficulty of hex-meshing problems. Computer-Aided Design.
https://doi.org/10.1016/j.cad.2019.102735

Kilian Verhetsel, Jeanne Pellerin, and Jean-François Remacle.
2019b. Finding hexahedrizations for small quadrangulations of
the sphere. ACM Transactions on Graphics (TOG) 38, 4 (jul
2019), 53. https://doi.org/10.1145/3306346.3323017

B Wördenweber. 1984. Finite element mesh generation. Computer-
Aided Design 16, 5 (1984), 285–291.

Shang Xiang and Jianfei Liu. 2018. A 36-Element Solution
To Schneiders’ Pyramid Hex-Meshing Problem And A Parity-
Changing Template For Hex-Mesh Revision. arXiv preprint
arXiv:1807.09415 (2018).

Soji Yamakawa and Kenji Shimada. 2003. Fully-automated hex-
dominant mesh generation with directionality control via pack-
ing rectangular solid cells. Internat. J. Numer. Methods Engrg.
57, 15 (2003), 2099–2129. https://doi.org/10.1002/nme.754
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.754

Soji Yamakawa and Kenji Shimada. 2010. 88-Element solution to
Schneiders’ pyramid hex-meshing problem. International Jour-
nal for Numerical Methods in Biomedical Engineering 26 (2010),
1700–1712. https://doi.org/10.1002/cnm.1256

Hao Zhang, Oliver van Kaick, and Ramsay Dyer. 2010. Spectral
Mesh Processing. Comput. Graph. Forum 29, 6 (2010), 1865–
1894. https://doi.org/10.1111/J.1467-8659.2010.01655.X

121

https://doi.org/10.1016/j.cma.2011.01.014
https://doi.org/10.1016/j.cma.2011.01.014
https://doi.org/10.1016/j.cad.2019.102735
https://doi.org/10.1145/3306346.3323017
https://doi.org/10.1002/nme.754
https://doi.org/10.1002/cnm.1256
https://doi.org/10.1111/J.1467-8659.2010.01655.X

Bibliography

Günter M. Ziegler. 1995. Lectures on polytopes. Graduate Texts
in Mathematics, Vol. 152. Springer-Verlag, New York. https:
//doi.org/10.1007/978-1-4613-8431-1

F. Zoccheddu, Enrico Gobbetti, Marco Livesu, Nico Pietroni, and
Gianmarco Cherchi. 2023. HexBox: Interactive Box Modeling of
Hexahedral Meshes. Comput. Graph. Forum 42, 5 (2023), i–viii.
https://doi.org/10.1111/CGF.14899

122

https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1111/CGF.14899

	Table of Contents
	Introduction
	Contributions
	Publications

	The Many Facets of Hexahedral Mesh Generation
	Background and Definitions
	Topological and Geometric Meshes
	Manifolds
	Dual Meshes

	What Domains Are Hex-Meshable
	How Hex-Meshes Are Constructed
	Topological Advancing Fronts
	Octree-based Hex-Meshing
	Frame fields and Hexahedral Mesh Generation
	Polycube-Based Methods
	Hex-Dominant Mesh Generation

	Evaluating and Improving Meshes

	The Complexity of Indirect Hex‑Dominant Meshing
	Problem Statement
	Reduction from 3-SAT
	Encoding of Boolean Variables
	Encoding of Logical Clauses
	T-junctions
	Combining Tetrahedra into Hexahedra is NP-Hard

	Searching for Combinatorial Meshes
	Enumerating combinatorial hexahedral meshes
	Backtrack search algorithm
	Search-space Reduction Strategies
	Parallel Search
	Lower Bounds for Hex-Meshing Problems

	Simplifying Hexahedral Meshes
	Cavity Selection
	Cavity Remeshing
	Untangling

	Flipping Towards Hexahedral Meshes
	Finding Combinatorial Meshes Using Quad Flips
	Overview
	Shellability and Quad Flips
	Identifying and Performing Flips
	Symmetry
	Computing the Automorphism Group
	Encoding the Search Tree
	Dominance Detection and Pruning

	Finding Larger Solutions using Pre-Computed Meshes
	Computing Small Shellable Meshes
	Using the Pre-Computed Table

	A Constructive Solution for Constrained Hex-Meshing
	Hexahedrizations for Small Quadrangulations of the Sphere
	Small Non-Shellable Hexahedral Meshes

	A Geometric Mesh of Schneiders' Pyramid
	Simplifying a Mesh of Schneiders' Pyramid
	The First Geometric Mesh of Schneiders' Pyramid
	Initial Numerical Solution
	Constructing an Exact Geometric Mesh

	Conclusion
	Bibliography

